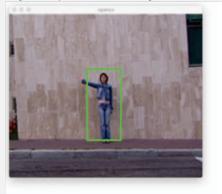
## Security for Al

## **Breakout Session Slides**

Our detailed report is located here: https://cps-vo.org/node/87188

# The Need for Secure Al


### **Physical Limitations**

Ivan Evtimov et al. "Robust physical-world attacks on deep learning models." arXiv preprint arXiv:1707.08945 (2017).



#### Imperceptible Perturbations

Ramanathan, Arvind, et al. "Integrating symbolic and statistical methods for testing intelligent systems: Applications to machine learning and computer vision." 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016.



(a)



#### Vulnerability to Single-Pixel Attacks

Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural networks." IEEE Transactions on Evolutionary Computation (2019).



Cup(16.48%) Bassinet(16.59%) Soup Bowl(16.74%) Paper Towel(16.21%)











### **Consequences for Autonomy**

Pei, Kexin, et al. "Deepxplore: Automated whitebox testing of deep learning systems." Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 2017.

### Input Sample. 1

### Darker Version of Input Sample.1

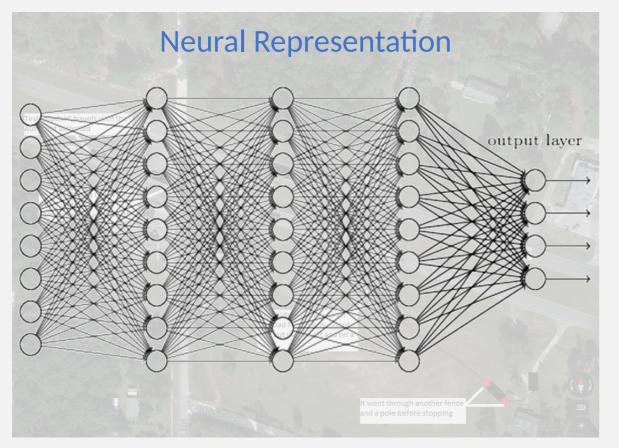


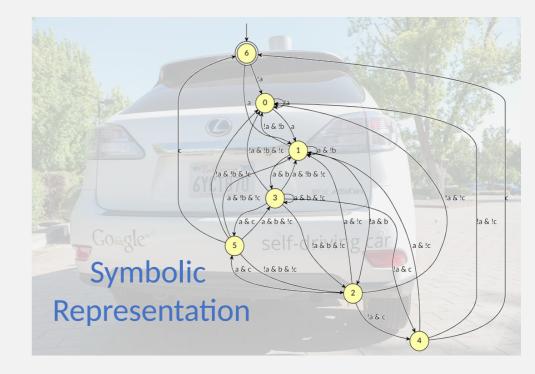


### Susceptibility to

Ozdag, Mesut, et al. On the Susceptibility of Deep Neural Networks to Natural Perturbations. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2019.

# Summary: Avenues of Inquiry


- 1. What does security look like at the data collection, design, training, test, and inference phases?
  - a) Successful attacks exist at most of these levels.
  - b) Need new techniques for defense.
    - i. Beyond adversarial training and defensive distillation
    - ii. Theoretical guarantees beyond L2 and Lp norms
- 2. How do we define metrics for secure AI?
  - a) Certified defenses in visual or other real-world norms e.g. malware must execute.
  - b) Mutual information for membership inference attacks
- 3. What can we formally prove about the security of AI?
  - a) Non-linear function approximation beyond ReLUs.
  - b) Beyond direct translation to Satisfiability Modulo Theories and Convex Optimization
  - c) Neuro-symbolic Al
  - d) Autonomy vs. data analytics
- 4. Is AI security different from traditional software and hardware security?
  - a) Silent errors and the need for explainability in AI e.g. methods for time series.


# A Promising Direction: Secure Neurosymbolic Al

"The car assumed that the bus would yield when it attempted to merge back into traffic"

[1] A Google self-driving car caused a crash for the first time.

http://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report. (2016).





"The camera failed to recognize the white truck against a bright sky" [2] Understanding the fatal Tesla accident on Autopilotand the

NHTSA probe.

https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/. (2016).