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MOTIVATION

The growth of the elderly population creates a critical need to
develop technologies to assist humans in daily activities.

This research provides a solution to the problems:

1. How do humans perceive autonomous mobile robots?
2. How to control mobile robots to improve comfort and
perceived safety?

VR EXPERIMENT AND DATASET GENERATION

Virtual Reality Human-Robot Environment

We collected human test data utilizing a virtual reality (VR)
environment. The subject observes a flying robot in the proximity.

VR runtime analytics, EDA, and PPG are synchronized with ROS and
logged for subsequent analysis.

Data Acquisition System

PPG Electrodermal activity (EDA)
Photoplethysmography (PPG)

Drone position

Drone velocity
User head position

Drone visibility

PROPOSED MODEL

Unknown factors

There are unknown factors not contained in the data that
may influence the outcome (human arousal).

X : robot’s position and velocity Y: arousal state measured

by physiological sensors

Z: other stimuli in VR environment

The plot shows that the phasic driver (arousal) increases
although the flying robot is virtually invisible to the subject.
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A latent variable model is proposed to consider the effect of
unknown factors.

A Hidden Markov Model

1. Human attention state (a latent variable) models change
of the focus of the attention.

if the human is attentive to the robot.
otherwise.

2. Regression Model:
Yn = 1{zn=1}(f5(x’n) +e€) + 1{Zn=2}5 ’

where f3 : R — R is a mapping with parameter £ and
d denotes the random source (e.g. Gaussian Mixture).

Maximum likelihood estimate of the model parameter is
determined using an EM algorithm.

1. Significant improvement of the likelihood

Least The Prosopsed Models

Squares K=1 K=2 K=4

Log-likelihood

K: number of basis in Gaussian mixture

2. Prediction of Arousal

The proposed method puts greater weight based on

the posterior of the attention state.
N

5 i= argmin 3 P(eu1lx,¥,0)(un — fa(n))?

n=1

The plot below shows that the least squares method’s
prediction is oscillatory and has a greater offset in the base.
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OPTIMAL PATH PLANNING

Bernstein Polynomial based Trajectory Generation

Convex hulls
containing the path

Collision can happen
between time nodes.

Using Bernstein polynomial
collision avoidance is ensured.

The polynomial trajectory generation is cast as a nonlinear
optimization: :
P min F'(y),
y

1. Quadrature techniques approximately calculate the cost
(e.g. flight time, energy spent, etc.).

2. Distance from the obstacle to the convex hulls is incorporated
into the inequality constraints to ensure collision avoidance.

Minimal flight time path generation.

Path Planning considering Safety Perception Models:

The cost considers the safety perception model so that the phasic
driver signal is below certain thresholds.

Least square

threshold

Hidden Markov model (HMM) is robust compared to
least square (LS) minimization.
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CONCLUSIONS

We present a path planning framework that takes into account the
human's safety perception in the presence of a flying robot.

We devise a machine learning method to estimate the uncertain
parameters of the proposed safety perception model based on test

data collected using Virtual Reality (VR) testbed.

Also, an offline optimal control computation using the estimated
safety perception model is presented.

FUTURE WORK

A drawback of the proposed path planning framework is the lack of
adaptability because the algorithms for estimation and path
planning are off-line algorithms.

Reinforcement Learning (RL) under Incomplete
State Observation

Observation:
* IMU, Camera image
Update * Physiological sensor

control law
%/
Evaluation (Reward): !

e User satisfaction survey

. Hidden State:
* Resource consumption

e User’s guess of robot’s goal
* User intention
 Emotional state

Hidden Markov Model Online Estimation for RL

Reinforcement learning with partially observable Markov decision
process (POMDP) is cast as online HMM estimation problem.
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