Software-Defined Cyber-Physical
Systems to Support Mobile-Defense
Security of Critical Utilities

Position Paper submitted to 2013 NSF Workshop on Energy
Cyber-Physical Systems

Riccardo Bettati, Guofei Gu, Narasimha Reddy
Texas A&M University

Background

A number of highly visible recent attacks on cyber-physical systems, such as SCADA
and other control and automation infrastructures (most prominently the Stuxnet
worm,) make implicit use of the location of the victim in the attacked system. This
form of location sensitivity is prevalent in SCADA-like systems, as proximity of the
supervisory component to the controlled or monitored device is necessary. For
example, Stuxnet exploited vulnerabilities in the Siemens WinCC operator control
and monitoring system to then exert control on the S7-300 programmable logic
controller (PLC), which in turn allows control of the frequency converters of the
plant. Existing known vulnerabilities in other SCADA systems, such as C3-ilex's
EOScada and a variety of PLC's, allow for similar scenarios.

Because of this proximity requirement, traditional security mechanisms have relied
to a great extent on isolation and on physical security. The recent exploits illustrate
that physical security is not nearly sufficient: The LNK exploit to distribute Stuxnet
to disconnected control hosts uses flash drives as attack vector. Similarly, there is
growing evidence that service and maintenance personnel are connecting infected
laptops to SCADA and other automation systems as part of servicing and monitoring
procedures.

At the same time, the systems targeted by this type of attacks are highly complex
and multilayered. They are composed of a variety of software from different



vendors, which interact and so offer a particularly rich and vulnerable attack
surface, easily overwhelming the system operators?.

Location Metamorphism

We propose Location Metamorphism to address both the location sensitivity of
attacks and the demand for manageability of complex systems by overtaxed
personnel. By Location Metamorphism we mean that the location of a system
component (typically a server or client program, a dynamically linked library, or
similar) can vary over the lifetime of a system. Throughout the system life cycle, it
can be hosted by a (typically unpredictable) sequence of hosts. Through
appropriate routing of requests, the component(s) of the system can migrate in
response to external influences (such as, triggered by disasters or attacks,) or
controlled by policy decisions, such as changes in defensive posture, or proactively,
in order to perturb the attack surface.

For example, in a location-metamorphic system one could co-locate and aggregate
critical components of a utilities infrastructure into virtual private clouds and so
benefit of economy of scale to protect the system.

Challenges

In order to make this type of location metamorphism beneficial, a number of
requirements must be met:

First, transitioning applications from a local host to remote servers must lead to a
net reduction of the attack surface, both in the local host, the remote server, and the
enabling network infrastructure. This includes (a) attack surface provided by the
application itself, (b) vulnerabilities during the transition, and (c) any vulnerabilities
provided by the location metamorphism support system.

Similarly, migration and redirection mechanisms must support hybrid systems,
which include both “cyber” and “physical” components. While software stacks and
protocols can be easily shimmed to support location metamorphism of cyber
components, this is less the case for physical components. Protocols need to be
investigated that are cognizant of the cyber-physical aspects of the system. In
particular, they must maintain latency tolerances expected by users and required by
real-time components (such as monitoring devices and generally controllers).

Further, basic operations to support location metamorphism must be provided.
Appropriate mechanisms must be in place to transition (that is, effectively migrate)
applications or application components.

1 According to the U.S. Census Bureau, in 2008, 70% of all utilities companies in the
U.S. employed less than 20 employees, with an additional 23% employing less than
100 employees. It is unlikely, therefore, that sufficient resources can be devoted to
cyber protection of the utilities infrastructure.



Finally, the manageability of location-metamorphic applications must be ensured.

Software-Defined Cyber-Physical Systems

Underlying the challenges to support location-metamorphic cyber-physical systems
is the need to de-couple the application (and the communication supporting it) from
the underlying physical system, comprising network, computational and security
infrastructure, and sensor and actuation devices.

In this position paper we propose to extend the “Software-Defined X” paradigm
(software-defined networking, software-defined data center) from a traditional
enterprise environment to systems that comprise of traditional computing and
network components as well as physical components.

Architecturally, we envision side-by-side frameworks to address the control planes
of (a) the network, (b) the application-components, and (c) the access and QoS
management of physical components.

A number of technical hurdles that need to be addressed in such a setting are well
known from traditional real-time and cyber-physical systems: (a) How to provide
end-to-end hard-real time constraints during normal operations and during large-
scale mode changes that would be triggered by component migrations and other
system reconfigurations. (b) How to represent, map, and satisfy QoS requirements
(timing, connectivity, and availability) that are incompatible with large-scale
deployments because they have been specified with co-location in mind.

Novel challenges include: (a) How to secure the frameworks that implement the
software realizations of the control planes and their interactions. (b) How to triage
access to physical components as a result of overload, malfunction, or attacks. (c)
How to generally “proxify” non-virtualizable but timing-sensitive components.



