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Outline of talk 
 

•  Networks of objects (IoT) as a cyber-physical system 
 
 

• Support mechanisms for Smart IoT infrastructure 
   [infusion of control to the M2M & D2D communication substrate]  
 
 
• Key element of “control” functionality: 
                                                         quality of sensing 
 
 
• Fuzziness of input data and system uncertainty 
             (replicated sensing, distributed sensing) 
 
 

• Case study of OCR-based text summarization 
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physical sensing 
elements 

Pre-processing 
on raw data 
(noise removal, 
filtering, . . .) 

Pre-processing 
on raw data 
(trace analysis, 

anomaly detection, . .) 

Pre-processing 
on raw data 

(feature recognition, 
target detection, . . .) 

A bird’s view of IoT system 



Pertinent research areas: 
M-to-M communication 
D-to-D communication, . . . devices in IoT infrastructure 

Decision-logic for adaptive IoT application 

Data processing 
algorithm K 

Programmability 
Reconfigurability 
Fault-tolerance 
               . 
               . 

flat interconnection of 
system components 

(sensor devices, smart phones, 
comm. links, data storage, . . .) 

Data processing 
algorithm 1 

internal state s1* 

Data processing 
algorithm 2 

internal state s2* internal state sK* 

.  . 

dynamic instantiation 
 of workflow processes 

alternate instances 
(passive) 

Smart IoT 

Architecture to transition from  C2  paradigm to  C3  paradigm 

Enablers for addition of 
“control” functionality 
to the C2 (Computing & 
Communication) 
substrate 

Service-level control interface for smart IoT 

Resource & component interface 
(virtualization, adaptation, . .) 

device-level instantiation 



Trust relationship between sub-systems in an IoT

Raw
IoT

infrastructure

Service-layer
algorithms &

workflow
processes

IoT
applications

assess how good
is a sensor data

processing
algorithm ?

QoS specs
for sensing

(SLA)

event
sensing

how good the
IoT infrastructure

insulates resources &
components from

attacks and failures ?

How much confidence can be bestowed on a sensing sub-system ? 
 
      è Requires a quantitative benchmarking of the quality of sensors 
                                    (we need probabilistic techniques) 

A system-level design question: 



Our goal in transitioning from IoT to CPS 

Design of verifiable IoT software systems where the “event sensing” 
processes can be managed and reasoned about in probabilistic ways 

A cyber-physical system S that cannot be verified about 
“what it is sensing from the external physical environment”  

is useless in meeting the mission-critical quality needs 
(however good  S  has been designed to be) 

 
 

Verifiability is an integral part of good design practice 
(from a software engineering angle) !! 



QoS-oriented goals of event sensing in IoT system 
 
•  Provision of programmable quality of data delivery as IoT service 
 

                Application-level QoS attributes are: 
                             ^^  Timeliness 
                             ^^  Accuracy 
                             ^^   Fault-tolerance 
                                             . 
                                             . 
 
 
•  Realization of service-layer algorithms  to enforce in-time and 
     sufficiently-accurate data delivery in a backdrop of failures/attacks 
 

             Resource-optimal protocols for data delivery 
                  ^^ Reduce message overhead incurred by network 
                  ^^ Reduce computational cycles expended at devices 



Component replication at sub-system interfaces 

Environment object being sensed 

deliver data 
(say, d-2, later)  

Voting-based data fusion 
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[‘cost’  is determined by the amount of: 
1.  computational efforts expended at system 
           design level  (to replicate device functions); 
2.  deployment/maintenance efforts expended 
           in physical world (to install multiple devices).] # of replica devices (N) 
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traffic 
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Example: A sensor replication based traffic congestion inference 

data comparison 
yields YES/NO 

outcome 

congestion inference 

We have also done studies on multiple cameras detecting a tank in battle terrain 
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1.  Resource constraints of data collection devices 
                    à limited amount of CPU cycles, memory size, 
                             battery energy in hand-held devices 
                       à  Limited bandwidth in network paths 
 
2. Large dimensionality of data collected from environment 
                    à 100’s of object features may need to be sensed 
                             and processed by data collection devices 
 
           ‘data classifier’ algorithm  M(F,L)  embodied in device V  represents the 
         computational processing for object detection over the object space  O 
                            F:  feature vector to describe object images 
                            L: logical formulas to relate features 
          e.g., aircraft detection:          features of target:   {length l, height h, speed s} 
           logical formula: “plane_detected  ≡  (l > 90’   AND   h > 12’   AND   s > 300 mph)” 
 
1 and 2 impact the system capabilities to accurately represent the data about an 
object from various devices and then vote on these data within a stipulated time 

Impact of resource constraints and data characteristics 
on accuracy of event reporting 



Existing models of voting 
Premise of  exact voting,     i.e., a non-malicious device V is 100% certain that the object 
          it claims to have detected, based on V’s locally computed data, matches with  the 
          actual object in physical world (within reasonable accuracy  ε ): 

Fuzzy voting:  the device V is less-than-100% certain on the accuracy of object it 
claims to have detected, relative to the actual object in physical world 

object space in 
physical world  Ο

detected object   x’ = 
            compute_object (sensed data  x  from physical world) 

a c 

b 
DEVICE 

V 

sensing 
of data 

detectable objects by 
device processing

a 
c 

b 

p(x) =  probability (detected_object=x’ | actual_object=x) for   ⏐x’ ⏐–⏐x⏐ < ε , where 
                                     0.0 << p(x) < 1.0   ∀ x  ∈ O 

New model of voting relevant for IoT systems 

Probabilistic fault models for fuzzy data in IoT systems 

⏐x’ ⏐–⏐x⏐ < ε   ∀ x  ∈ O 



sensed 
object 

x1 x2 xk .  .   . 
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ij-th element of matrix:    conditional probability that the  object detected 
                                   is  xi  when the object occurrence in physical world is xj 
    i.e., probability (sensed_object = xi  | actual_object = xj)    ∀ xi, xj ∈  O 

EXAMPLE (aircraft detection)  ** 

aircraft F-15 T-38A 

F-15 

falcon-20 falcon-100 

T-38A 

falcon-20 

falcon-100 

0.97 0.03 0.0 0.0 

0.03 0.96 0.0 0.01 

[** Refer to     Automated Target Recognition Using Passive Radar and Coordinated Flight Models, 
Lisa M. Erhman and Aaron D. Lanterman, proc. SPIE 5094, Automated Target Recognition XIII, Orlando (FL), April 2003] 

. 

. 
0.0 0.87 0.01 0.12 

0.0 0.87 0.01 0.12 

confusion matrix to capture uncertainty in object detection 

Sensor calibration is also useful in obstacle sensing on roads, traffic congestion reporting, etc 
[switching to different sensors under different observed conditions: e.g., night-time vs day-time, 
distance to obstacle, visibility under fog, etc ] 



Case study: 
OCR (optical Character recognition) as a sensor 

A logical sensor was created that would accept an image of a document 
as input, run this input through an arbitrary filter, run the filtered output 
through Tesseract, and return the OCR string output summary.  The 
output summary was then compared to the ground truth using tf-idf 
vectors to measure the accuracy of each sensor.  Five such logical 
sensors were created and tested on three documents. 
 

Application example: Law-enforcement in major cities examining a large # of 
                           social media postings, text extraction from YouTube clips, etc 



Case study of OCr  ( . . . contd.) 

An	  example	  Document	  Input/Output	  

Helve0ca	  
	  
Lorem	  ipsum	  dolor	  sit	  amet,	  consetetur	  sadipscing	  
elitr,	  sed	  diam	  nonumy	  eirmod	  tempor	  invidunt	  ut	  
labore	  et	  dolore	  magna	  aliquyam	  erat,	  sed	  diam	  
voluptua.	  At	  vero	  eos	  et	  accusam	  et	  justo	  duo	  
dolores	  et	  ea	  rebum.	  Stet	  clita	  kasd	  gubergren,	  no	  
sea	  takimata	  sanctus	  est	  Lorem	  ipsum	  dolor	  sit	  
amet.	  Lorem	  ipsum	  dolor	  sit	  amet,	  consetetur	  
sadipscing	  elitr,	  sed	  diam	  nonumy	  eirmod	  tempor	  
invidunt	  ut	  labore	  et	  dolore	  magna	  aliquyam	  erat,	  
sed	  diam	  voluptua.	  At	  vero	  eos	  et	  accusam	  et	  justo	  
duo	  dolores	  et	  ea	  rebum.	  Stet	  clita	  kasd	  gubergren,	  
no	  sea	  takimata	  sanctus	  est	  Lorem	  ipsum	  dolor	  sit	  
amet.	  Lorem	  ipsum	  dolor	  sit	  amet,	  consetetur	  
sadipscing	  elitr,	  sed	  diam	  nonumy	  eirmod	  tempor	  
invidunt	  ut	  labore	  et	  dolore	  magna	  aliquyam	  erat,	  
sed	  diam	  voluptua.	  At	  vero	  eos	  et	  accusam	  et	  justo	  
duo	  dolores	  et	  ea	  rebum.	  Stet	  clita	  kasd	  gubergren,	  
no	  sea	  takimata	  sanctus	  est	  Lorem	  ipsum	  dolor	  sit	  
amet.	  
	  

Representation of text as image 
(hard to look for specific words/phrases) 

Representation of text in ASCII 
(easily searchable texts/phrases) 



OCR	  –	  Local	  Machine 
19.39308 

Table	  1:	  Time	  (seconds)	  to	  Compute	  OCR	  Task	  on	  Local	  Machine 
 

OCR	  –	  Wifi OCR	  -‐	  AirCard 

planetlab2.tsuniv.edu 25.61008371 28.51807368 
pl2.rcc.uoCawa.ca 27.741041 27.61074164 
planetlab1.cs.colorado.edu 31.64578674 60.43584437 

Table	  2:	  Time	  (seconds)	  to	  Compute	  OCR	  Task	  on	  3	  Different	  Remove	  VMs 
 

Data	  Transfer	  –	  Wifi Data	  Transfer	  -‐	  AirCard 

planetlab2.tsuniv.edu 44.98775117 46.84633965 
pl2.rcc.uoCawa.ca 8.424560809 3.419660211 
planetlab1.cs.colorado.edu 76.36823809 91.05481637 

Table	  3:	  Time	  (seconds)	  to	  transfer	  2.5	  MB	  file	  from	  3	  Different	  Remote	  VMs 

The	  OCR	  task	  for	  the	  2.5MB	  bitmap	  file	  took	  an	  average	  of	  19.39	  seconds	  on	  the	  local	  machine.	  	  When	  
run	  as	  a	  surrogate	  computa0on	  one	  the	  3	  remote	  VMs,	  it	  took	  only	  slightly	  longer,	  accounted	  for	  by	  latency	  
between	  client	  and	  server	  and	  0me	  to	  download	  necessary	  soVware	  packages.	  	  Lastly,	  0me	  to	  transfer	  the	  
2.5MB	  file	  was	  tested	  between	  the	  client	  and	  remote	  VMs. 

Measurement results from OCR processing on 3#s of PlanetLab nodes 



OCR experiments: 
controlled injection of fuzziness in raw input data 

 
Filters Used 
•  Gaussian Blur – A low pass filter that reduces image noise 

and detail.  It blurs the input image by a Gaussian function. 
•  Smooth – Points in the data set are modified so that 

adjacent points are closer to each other in magnitude.  
Points higher than adjacent points are decreased, while 
those that are lower are increased.  For example, a moving 
average will accomplish this effect. 

•  Sharpen – A high pass filter that exaggerates smaller 
details.  The opposite of a blur filter. 

•  Edge Enhance – Enhances the edge contrast of an image to 
improve its sharpness. 



Sample timeliness & accuracy assessment of OCR sensors 



Sample timeliness & accuracy assessment of OCR sensors 



Define two metrics: 1. confidence that a data  Xi  delivered to the user is good  ---   Θ;
                               2.  availability of data Xi  to the user in the presence of uncertainty 
                                                                                     about the goodness of Xi  ---  ζ 

^^  Estimate how often  Xi  is not delivered even though        YES votes have been received  K 1 l 

 K 1 l 
Let              à  minimum # of YES votes needed to attain a confidence 
                               higher than the per-device confidence level   p(Xi) 

h 

Sample estimates 

Input parameters: 
N=17;    fm=2; 

p(Xi)=0.8 *** : not possible 

K 1 h 
K 1 

l 

Confidence in 
data delivery(≥ Θ) 

Data 
availability (≥ ζ) 

11 
12 
12 
12 

*** 
12 
13 
14 

35.94 % 

98.72 % 
99.98 % 
99.99 % 

*** 
100 % 
96 % 
64 % 

N-1-fm 
K    - fm  1 h 

1 -                   [1- p(Xi)]                          >   Θ,    where   Θ >  p(Xi)  and  K     ≥  K 
 K     - fm+1-K 1 h 2 (   ) 

^^  Delivery occurs after receiving a certain # of YES votes         in order to attain a confidence  Θ  K 1 h 

h l l l 

Analysis of sensing quality with device replication & heterogeneity 



Prototype system results 
(on UNIX-based LAN) 

fm: Max. # of device failures 
    assumed by voting protocol 
r:  degree of faulty behavior of 
        a failed device (0 < r ≤ 1) 
fa: Actual # of device failures 
K: Total device pool size(K ≥ N) 

delayed query result (TTC > Δ) is less useful 
                      è reduces “service availability” 
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Experimental study 
of IoT management 
(with device replication) 
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SI: system inputs 

B: device-level CPU cycles & network bandwidth for voting 
N; number of replicas;  pi:  per-device confusion probability 

{p
i}

i=
1,

2,
..,

N
 

PCA: 
principal component analysis 

Autonomic management of device replication 

External feedback 



Future research plans 

•  Injection of attack, stressor events on IoT system being tested 

•  Incorporation of system utility functions and QoS penalty as 
part of dependability analysis of IoT systems 

 
•  Identification of probabilistic measures of sensing quality 

•  Machine-intelligence and Markov decision processes for sensor 
system analysis 

•  Software cybernetics methods for autonomic system 
improvement 


