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Abstract—We motivate computations in a multifunctional net-
worked system as instances of algebraic path problems on labeled
graphs. We illustrate, using examples, that composition operators
used in many function computations in a networked system follow
the semiring axioms. We present an abstract framework, using
a special idempotent semiring algebraic path problem, to handle
multiple metrics for composition. We show that using different
vector order relations in this abstract framework, we can obtain
different rules of compositions such as Pareto, lexicographic
and max-order efficiency. Under this framework, we identify
a class of tractable composition rules that can be solved in
different multi-criteria settings at affordable computational cost.
We demonstrate using an example from trusted routing that
logical security rules of admission control can be combined
with delay performance metrics in the multi-criteria optimization
framework.
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I. INTRODUCTION

The recent decades have witnessed a paradigm shift in
system theory: ubiquity of inexpensive communication and
computing devices has spawned several applications that are
necessarily distributed among physically separated processors
[18], [27]. These applications range from distributed databases,
transitive security authentication schemes to distributed esti-
mation and control protocols. Since all these applications are
built over an underlying communication network, these sys-
tems are aptly called networked systems. The heterogeneity of
devices, which constitute the networked system, and the varied
functions that they support have created several interesting
problems that did not exist in traditional system theory. For
instance, a distributed sensor network is a networked system
that performs sensing, control and actuation. To perform this
primary functionality, this networked system also supports
several communication and security protocols. Further, for
these distributed systems, the capabilities and functionalities
of the different constituent component subsystems differ sig-
nificantly. Typically there are different sensor nodes to sense
different physical parameters. Certain nodes, which are not
energy-limited, might support stronger communication and
security mechanisms. In essence, a networked system performs
several function computations over a distributed heterogeneous

platform. We find that methods from traditional system theory
are handicapped to handle this heterogeneity.

Different applications of such a networked system perform
computations with different functional metrics. In many cases,
the aggregate metric for a particular computation is obtained as
composition of local metrics that is measurable by the different
constituent subsystems. The rules of composition, to compute
this aggregate metric, differ among different computations. For
instance, for the routing computation, the metric is typically
the interface delay. In this case, the composition of the metrics
is additive across the different subsystems. However, for a
trust/security computation, a possible metric is the strength
of the cryptographic key between a pair of subsystems, and
this follows a bottleneck composition. Consequently, for a
multifunctional heterogeneous networked system, the different
computations can be formulated as a multi-metric network
problem with different rules of composition for each of the
metrics.

Several computations, such as authentication mechanisms,
are specified as logical rules over functional metrics. In these
cases, the metric sets are not necessarily totally ordered. We
will illustrate with examples from trust evaluation schemes
that we need a partially ordered set to describe these metrics.
We motivate that for many applications, the composition rules
on these metrics follow the semiring axioms.

In the multi-metric setting, the different metrics (for the
different computations) are not trivially comparable. For exam-
ple, metrics such as delay, used in routing, cannot be compared
with logical trustworthiness metrics, used in trust evaluation.
To handle this, we introduce composition methods from multi-
criteria optimization theory [9] that provide tradeoff methods
for the different functionalities: different tradeoff methods
arise from different vector orders. We develop a common
framework where several multi-criteria tradeoff methods can
be viewed as instances of idempotent semiring algebraic
path problems [17]. Applying different vector-orders to this
framework, we show that we can obtain Pareto, lexicographic
and max-order solutions. Although the different multi-metric
tradeoffs can be encompassed in this idempotent framework,
we illustrate, using an example, that these tradeoff methods
under some composition rules are computationally intractable.
We identify a class of semiring rules that can be solved at
affordable computational complexity. The main contributions
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of this paper are
1) Exploiting the diversity of idempotent semiring alge-

bra to combine traditional performance metrics such
as delay and bandwidth with logical metrics such as
trustworthiness.

2) Identifying a class of composition rules that are com-
putationally tractable in the multi-criteria path problem
framework.

This paper is organized as follows. In Section II, we
motivate the need for a multi-metric framework. In Section
III, we introduce semirings and the associated algebraic path
problem. We also show that a number of computations can be
abstracted by the algebraic path problem. In Section IV, we
develop a common framework for multi-metric composition
rules inspired from multi-criteria optimization. Finally, in
Section V, we introduce the example of trusted routing. We
show that the methods used to solve trusted routing can be
extended to a general setting, thereby, identifying a class of
tractable multi-metric algebraic path problems.

II. MOTIVATION

Communication networks have grown to become very het-
erogeneous and multifunctional [27]. Modern wireless multi-
hop networks such as Mobile Ad Hoc Networks (MANETs)
and wireless sensor networks have changed the networking
paradigm, creating several interesting algorithmic problems
that did not exist in traditional networks. Unlike traditional
networks, such as the Internet, these networks are deployed
to perform a specific functionality, e.g., industrial control. To
support this primary functionality, these networked systems
perform several other functions, including communication,
control and security operations/computations. These functions
can be abstracted as optimization or satisfaction problems
defined over different metrics that capture the performance of
various functionalities of the network, e.g., delay, throughput,
security/trust. In many problems, the constraints are specified
as rules defined over these metrics [24], [3]. Typically, such
rules are defined using local metrics, i.e., metrics visible in
the local neighborhoods of the different components of the
networked system.

To the best of our knowledge, there has been no system
model that captures these network problems. We argue that
these network problems can be expressed as solutions to prob-
lems posed on directed labeled graphs. For these problems, the
labels on the nodes and arcs correspond to different metrics,
which typically live in partially ordered sets (Subsection
III-A). In most cases, the problem definition expresses the
rules by which these metrics should be composed to obtain
aggregate network metrics. We argue that many such rules can
be expressed using the operators of a semiring algebra. This is
because several well-known composition rules that work with
local metrics can be expressed as generalized path problems
over semiring algebras [20]. There has been very little work
that aims to study the composition of multiple metrics from
an algebraic point-of-view. We define a system model that can
be used to capture rules with multiple metrics. We show that
these rules can be expressed as generalized multi-criteria path
problems with an idempotent structure (Section IV).

III. SEMIRING SYSTEMS

The most common model used for networked interactions
is a labeled directed graph. In this paper, we consider only arc
labels. Extending the system model for node labels is simple.
In our case, the labels represent the different link metrics.

A. Graphs, Metrics and Orders

Let G(V,A) denote a directed graph, where V is the vertex
set of stations or processors and A ⊆ V × V is the directed
arc set. Associated with each arc (u, v) ∈ A is a label of m
metrics, denoted by the vector cuv . Each component cuv(l) ∈
Sl, 1 ≤ l ≤ m, where Sl is a partially ordered set. We call
Sl the constituent metric set and S = ×lSl the product metric
set.

Note that we need the partial order abstraction to encompass
logical rules and their corresponding metrics. An example of
such a metric is the trustworthiness of a node in an autonomous
network. For instance, in the Pretty Good Privacy (PGP)
certificate signing mechanism [26], the certificates are signed
with one of the following trustworthiness levels: unknown
(a), untrusted (b), marginally trusted (c) and fully trusted
(d). Clearly, the unknown level cannot be trivially compared
with any of the other levels. To capture these characteristics
of metrics used for generic rules, we need a partial order
structure.

Consider a set X . A partial order relation on X is a binary
relation ≤ such that ∀x, y, z ∈ X satisfies:

i. Reflexivity x ≤ x
ii. Antisymmetry x ≤ y and y ≤ x⇒ x = y

iii. Transitivity x ≤ y and y ≤ z ⇒ x ≤ z
The corresponding strict order relation for x, y ∈ X is

x < y ⇐⇒ x ≤ y, x 6= y.

In a partially ordered set, not all elements are necessarily
comparable, i.e., x||y ⇒ x 6≤ y and y 6≤ x. Here || is the
incomparability relation. Another important order relation is
the covering relation:

x ≺ y ⇐⇒ (x < y and x ≤ z < y ⇒ x = z).

The covering relation x ≺ y implies that there exists no other
element in between x and y in the ordered set X . In this
case, x is called the covered element of y, and y is called the
covering element of x. A totally ordered set X satisfies an
additional trichotomy condition:

x, y ∈ X ⇒ x ≤ y or y ≤ x.

Another characteristic of ordered sets is that they satisfy the
duality principle: Given an ordered set X , we can construct
its dual ordered set X∂ by defining x ≤ y to hold in X∂ iff
y ≤ x in X . ⊥ ∈ X is the bottom element if ⊥ ≤ x, ∀x ∈ X .
Dually, the top element > is the bottom element of X∂ .

For the PGP example, the set {b, c, d} forms a totally
ordered set with a covering relation b ≺ c ≺ d. And
a||x, x ∈ {b, c, d}. There are no bottom and top elements
for this partially ordered set. However, for the totally ordered
subset {b, c, d}, there is a top element d and and a bottom
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element b. This example is generalized by the following
lemmas.

Lemma 3.1: Any finite totally ordered set has a top element.
Lemma 3.2: For any finite totally ordered set, every element

other than > has a covering element.
The above two lemmas are proved in [8].

In this paper, we provide examples of rules that compose
trustworthiness metrics that live in a finite set. Such metrics
encompass a large body of literature on trust and reputation
systems ([1], [25],[6], [19],[7], Amazon, eBay, etc).

B. Composing Metrics

Let Pij denote the set of paths from i ∈ V to j ∈ V .
Note that Pii can include self-loops and always includes
the empty path p = (i). For every path p = (i =
u1, u2, u3, . . . , un−1, un = j) ∈ Pij , we obtain the path
metric by composing the arc metrics along the path. We obtain
an m-dimensional path metric wp by the component-wise
composition:

wp(l) = cu1u2
(l)⊗lcu2u3

(l)⊗l· · ·⊗lcun−1un
(l), 1 ≤ l ≤ m,

where ⊗l is the rule for arc composition of the lth component.
For instance, for the metric set Sl = {⊥,>} the arc compo-
sition rule ⊗l could be Boolean disjunction ∨ or conjunction
∧. For the more complicated PGP example, it would be any
transitive trust evaluation rule [24]. In vector notation, all the
compositions are compactly represented as

wp = cu1u2
⊗ cu2u3

⊗ · · · ⊗ cun−1un
. (1)

wp ∈ S is the vector-valued weight of path p. Note that we
have not defined the weight of an empty yet; it will be defined
in Subsection III-D. Given the weight metrics for all the paths
between a pair of vertices, they can be composed to get the
aggregate metric between the vertices. The composition of the
path weights, i.e., path composition, is expressed using another
operator ⊕:

xij = ⊕p∈Pijw(p) (2)

Note that in general xij need not be of the same type as the
vector path weight w(p). For instance, see the bi-objective
shortest path problem in Subsection III-D.

The system of equations given by Equations (1) and (2)
is called the algebraic path problem. In general, without any
assumed structure on ⊗ and ⊕, the algebraic path problem is
expensive to compute. This is because it involves computing
the weights of all the paths between every pair of vertices,
which can be exponentially large.

In this paper, we will introduce several rules for path
composition used in multi-criteria optimization. We will use
the superscript notation to distinguish between the different
rules, i.e., for a rule induced by a non-dominance function
f , we represent the path composition by ⊕f . For any vector
quantity with m elements, say y, y(q..r), 1 ≤ q ≤ r ≤ m,
denotes the sub-vector from index q to r, i.e., y(q..r) =
[y(q) y(q + 1) . . . y(r)]T .

C. Semiring Algebra

A semiring is an algebraic structure (S,⊕,⊗) that satisfies
the following axioms:

(A1) (S,⊕) is a commutative monoid with a neutral element
©0 :

a⊕ b = b⊕ a
a⊕ (b⊕ c) = (a⊕ b)⊕ c

a⊕©0 = a

(A2) (S,⊗) is a monoid with a neutral element ©1 , and an
absorbing element ©0 :

a⊗ (b⊗ c) = (a⊗ b)⊗ c
a⊗©1 =©1 ⊗ a = a

a⊗©0 =©0 ⊗ a = ©0

(A3) ⊗ distributes over ⊕:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

In the algebraic path problem framework, introduced in
Subsection III-B, if the path and the arc composition rules
correspond to the generalized sum ⊕ and the generalized
product ⊗ of a semiring algebra, the algebraic path problem
is called the Semiring Algebraic Path Problem (SAPP). In
Subsection III-D, we will illustrate that the semiring structure
for the algebraic path problem yields a compact representation,
which in many cases has reduced computational complexity.
For a path composition rule ⊕ that follows A1, any arc
composition rule ⊗ that satisfies the axioms A2 and A3, i.e.,
forms a semiring with ⊕, is said to be a semiring compatible
arc composition for that path composition.

D. Semiring Algebraic Path Problems

We argue that a number of composition rules used in
networked systems can be expressed over semiring algebras.
Many problems of data networking are instances of the SAPP.
For example, some of the commonly used semirings in routing
are shown in Table I [12]. In [24], the authors show that
the rule-based web-of-trust certificate signing in PGP [26]
is a special case of a computation over semirings and also
construct other semirings for trust evaluation. For examples
related to communication networks, we refer to [3]. For more
general semiring applications, see [11], [10]. In most of these
examples, from routing to trust evaluations, the computations
correspond to a SAPP [20], [24]. To better illustrate this cor-
respondence, we will introduce two example systems before
presenting the algebraic framework. The first example is the
classical single metric shortest path problem [3] and the second
example is the bi-objective/bi-metric shortest path problem.
These examples clearly illustrate the difference in the nature of
the solutions between single-metric and multi-metric network
problems: they motivate the need for solution path-sets rather
than solution paths for a multi-metric network problem. The
examples also serve as introduction to the material in Section
IV.
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Name S ⊕ ⊗ ©0 ©1 routing application
sp Ẑ+ min + ∞ 0 shortest path

spq Ẑq min + ∞ 0 shortest path (bounded distance)
bw Ẑ+ max min 0 ∞ widest path (greatest capacity)

bwq Ẑq max min 0 ∞ widest path (greatest bounded capacity)
rel [0, 1] max × 0 1 most reliable path

cup.cap(W ) 2W ∪ ∩ ∅ W shared link attributes
cap.cup(W ) 2W ∩ ∪ W ∅ share path attributes

TABLE I: Semirings used in network routing, where Ẑ+ = Z+ ∪ {∞} and Ẑq = {0, 1, 2, . . . , q − 1,∞}
.
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Fig. 1: Example network for shortest path computation

The first example is that of the shortest path computation,
which is used in several applications such as data network
routing and web mapping. Consider the directed graph shown
in Figure 1 with arc weights denoted by cuv . For this
computation, the weight of the path p is given by the rule
w(p) =

∑
(u,v)∈p c(u, v), and the shortest path weight (aggre-

gate metric) between a pair of vertices i, j is given by the rule
xij = minp∈Pij w(p). Clearly, the rules of composition can
be described by the (Ẑ+,min,+) semiring algebra (©0 =∞,
©1 =0). Further, these compositions have a structure that can
be expressed by a system of equations. Let the weighted
adjacency matrix of graph in Figure 1 be denoted by

C =


1 4 7 ∞
∞ 3 1 ∞
∞ 2 ∞ 3
5 ∞ 6 2

 .
The artificial weights ∞ =©0 are used for non-existent arcs.
Consider the shortest path from i to j. If i 6= j, then this path
is of the form (i = u0, u1, . . . , ul = j). For this shortest
path, the sub-path p′ = (u1, u2, . . . , ul = j) must be the
shortest path from u1 to j, and consequently, the shortest path
metric is given by xij = cik + xkj , for k = u1. Thus, the
shortest path metric computation for i 6= j can be written
as xij = mink∈V (cik + xkj). For i = j, we also need to
consider the empty path from j to j. For the shortest path
computation, the weight of an empty path is 0 (=©1 ). Thus,
the shortest path computation from j to j can be expressed as

xjj = min{mink∈V (cjk + xkj), 0}. For all pairs of vertices,
we can express these computations as a system of equations:

xij = min
k∈V

(cik + xkj), for i 6= j, and

xjj = (min
k∈V

(cjk + xkj)) min 0,

where (mink∈V (cjk + xkj)) min 0 in the above equations is
min{(mink∈V (cjk + xkj)), 0}. For the example in Figure
1, the unique solution of shortest path lengths to system of
equations is

X =


0 4 5 8
9 0 1 4
8 2 0 3
5 8 6 0

 .
Note that for each pair of vertices i and j, the solution
corresponds to exactly one path from i to j in G.
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Fig. 2: Example network for bi-objective shortest path com-
putation

The next example is a bi-objective version of the shortest
path problem. Consider an example network shown in Fig. 2.
It is identical to the network in the previous example, Fig. 1,
except for the weights, which are extended to vector weights.
In this case, the weight of a path p is given by vector addition
w(p) =

∑
(u,v)∈p

cuv . Consider the paths from vertex 1 to vertex

4: path (1, 3, 4) has a weight [10, 5]T and path (1, 2, 3, 4) has
a weight [8, 18]T . Each of the paths has a smaller value for
one of the two metrics. In such a setting, optimality is usually
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defined in a Pareto sense [9]. A vector v ∈ Ẑ2
+ is said to be

Pareto efficient with respect to a subset F ⊆ Ẑ2
+ if there does

not exist in F a vector v′ 6= v that is componentwise smaller
than or equal to v. A set of paths is said to be Pareto efficient
if its vector weights are Pareto efficient. The Pareto efficient
path problem is defined in terms of path-sets rather than paths
(Section 6.7 of [11]), and the corresponding Pareto solutions
are subsets of Ẑ2

+. For closure, the arc weights need to be in
2Ẑ2

+ , which is the power-set of Ẑ2
+. For the example in Fig.

2, the weighted adjacency matrix is given by

C =


{[1, 1]T ]} {[4, 6]T } {[7, 1]T } {[∞,∞]T }
{[∞∞]T } {[3, 3]T } {[1, 8]T } {[∞,∞]T }
{[∞,∞]T } {[2, 1]T } {[∞,∞]T } {[3, 4]T ]}
{[5, 6]T } {[∞,∞]T } {[6, 2]T } {[2, 2]T }

 .
Consequently, for the arc composition, we need to define
a rule that works on efficient sets (corresponding to Pareto
efficient paths). For example, the Pareto efficient paths from
vertex 1 to vertex 4 of Fig. 2, i.e., (1, 3, 4) and (1, 2, 3, 4),
are composed of the Pareto efficient paths from vertex 1
to vertex 3, i.e., (1, 3) and (1, 2, 3) respectively, and the
arc (3, 4). The composition can be expressed using the rule
x14 = Pareto efficient vectors of the set {x13 + c34}. The
path-set composition rule for two path-sets selects all the
Pareto efficient vectors in the union of the weights of the two
path-sets. Formally, for X,Y ∈ 2Ẑ2

+ , the arc composition rule
is

X +P Y = Pareto efficient vectors of the set X + Y,

where X + Y = {x + y : x ∈ X, y ∈ Y }, and the path
composition rule is

X Min Y = Pareto efficient vectors of the set X ∪ Y.

(Note that this Min operator is different from the standard min
operator for single-metric path problems)

The Pareto efficient paths are then given by

xij = Mink∈V (cik +P xkj), for i 6= j, and
xjj = (Mink∈V (cjk +P xkj))Min∅.

Again, the tuple (2Ẑ2
+ ,Min,+P ) forms a semiring with ©1 =

{[0,0]T } and ©0 =∅ (where the Pareto efficient vector of ∅ is
defined to be [∞,∞]T ).

In the above seemingly different examples, the computations
of the aggregate metric over the two different semirings appear
to have a common structure: Instead of computing the weight
of every path, w(p) for all p ∈ Pij (Equation (1)) and
then computing the aggregate metric by path composition
(Equation (2)), the semiring distribution (Axiom A3) factors
out the common terms of the computation (of Equations (1)
and (2)), thereby expressing the aggregate metric in terms
of the aggregate metrics of the intermediate vertices. This
can be generalized as follows. For a directed graph G(V,A)
labeled with elements from an arbitrary semiring (S,⊕,⊗)
(cuv, (u, v) ∈ A), artificial arc weights of ©0 for the non-
existent arcs, and empty path weight ©1 , the generalization of

the computation of the above examples is given by

xij = ⊕k∈V (cik ⊗ xkj), for i 6= j, and
xjj = (⊕k∈V (cjk ⊗ xkj))⊕©1 . (3)

This fixed point equation (Equation (3)) is called the
Semiring Algebraic Path Problem (SAPP). Note that this fixed
point equation is a compact representation of the arc and
path composition rules (Equations (1) and (2)) that follow the
semiring axioms.

IV. MULTI-METRIC SAPPS

For a multi-metric SAPP, the vector weight of a path is
given by the arc composition (Equation (1)):

wp = cu1u2
⊗ cu2u3

⊗ · · · ⊗ cun−1un
.

This corresponds to m different compositions of the form

wp(l) = cu1u2
(l)⊗lcu2u3

(l)⊗l· · ·⊗lcun−1un
(l), 1 ≤ l ≤ m.

Since these compositions follow semiring axioms, each of
them corresponds to a monoid (Sl,⊗l) with a neutral element
©1 l. The vector arc composition can be represented in the
product monoid (S = S1 × S2 × · · · × Sm,⊗). The neutral
element of this product monoid is ©1 = [©1 1,©1 2, . . . ,©1 m]T .
In the path framework, described in Subsection III-B, the
weight of an empty path is ©1 .

To define path composition rules for paths with vector
weights, we consider rules used in multi-criteria optimization
theory [9]. It is known that multi-criteria path problems with
additive arc composition in Rm can be expressed by operators
in a special class of semirings with an idempotent structure
([21], [16], Section 3.4 of [17], Section 6.7 of [11]).

A. Idempotent Semirings

For an idempotent semiring, the ⊕ is idempotent:

a⊕ a = a, a ∈ S.

It is shown in [11] that this idempotent property induces a
canonical (partial) order that is expressed as

a ≤ b ⇐⇒ a = a⊕ b.

(Note that canonically ordered semirings are also called dioids
in the literature [11].) All the semirings in Table I are idempo-
tent semirings. A sub-class of idempotent semirings is called
selective semirings where the ⊕ operator is selective:

a⊕ b = a or b, a, b ∈ S.

For example, sp, spq , bw, bwq and rel of Table I are selective
semirings. However, cap.cup(W), cup.cap(W) and the bi-
objective sp (example in Subsection III-D) are idempotent,
but not selective.
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B. Idempotent rules for multi-metric SAPP
For the multi-metric network problems that we consider,

the metrics, such as logical trust metrics, live in an arbitrary
ordered set (Subsection III-A). For these metrics, the arc
composition rules are complicated rules such as admission
control rules (trusted routing example in Subsection V-A).
Even in these cases, the methods of [21] can be extended, to
handle logical rules, by defining suitable dominance functions.

The metrics that we consider for our systems live in a
vector-valued product set (S = ×ml=1Sl), where the constituent
set Sl is an ordered set. Although the constituent metric sets
Sl, 1 ≤ l ≤ m are partially ordered, there is no natural order
induced in the product set. There are several order relations
to compare vectors that can be used to define an order on S
[9]. Table II shows the orders that are most commonly used
to compare vectors. We will show that each of these orders
induces a different idempotent law for path composition.

Every order relation in Table II creates efficient vectors. The
notion of efficiency is generic to any partially ordered set.
We adopt the terminology of efficiency from [9] to our multi-
metric path problems. We represent the multi-metric efficiency
for the algebraic path problem by the tuple

(Pij , w(.), S,≤).

The above tuple indicates that the decision set Pij is the set
of paths from vertex i to vertex j. The function w : Pij → S
maps the decision set Pij to the objective set S. Finally, the
order that is used to compare the elements of the objective
set, S, is the order relation ≤. Depending on the type of order
used, we obtain different order relations for S (Table II).

For the order relations defined in Table II, the strict order
is defined for x, y ∈ S by

x < y ⇐⇒ x ≤ y and x 6= y.

With this strict order relation, we can define non-dominated
vectors for any subset S′ ∈ 2S , where 2S is the power set
of S. A vector x ∈ S′ is non-dominated in S′ if there is no
other vector y ∈ S′ such that y < x. The set of all non-
dominated vectors in S′ ∈ 2S is called the non-dominated
frontier of S′ and is denoted by f(S′). Note that the non-
dominated frontier can be defined for any partially ordered
set. This non-dominated frontier defines an idempotent law:
for any U, V ∈ 2S ,

U ⊕f V = f(U ∪ V ).

We call the above law the efficiency idempotent law. The super-
script f indicates the non-dominance function, and thereby the
order relation used to construct the idempotent law. Clearly,
(2S ,⊕f ) is a commutative monoid with neutral element ∅.

For the algebraic path problem (Equation (2)), applying
the above idempotent rule for path composition yields non-
dominated solutions and efficient paths: For a pair of vertices
i, j ∈ V , the efficiency idempotent law ⊕f yields the set
of all non-dominated solutions, denoted by xfij , and the
corresponding solution path-set called the efficient path-set.

The arc composition rule (Equation (1)) that is semiring
compatible with ⊕f is denoted by ⊗f . As in the case of the bi-
objective sp example, the arc composition operates on the sets

in 2S . Here the product/arc composition of two sets follows a
non-dominated version of Minkowski products:

U ⊗f V = f({u⊗f v : u ∈ U, v ∈ V })

This is another monoid (2S ,⊗f ). Note that the rules of
composition are generalizations of the rules defined for the bi-
objective sp problem (Subsection III-D). The aggregate metric
for efficiency can be expressed in the idempotent semiring
(2S ,⊕f ,⊗f ) and the composition rules can be represented by
the following SAPP, which we call the efficiency SAPP.

xfij = ⊕fk∈V ({cik} ⊗f x
f
kj), for i 6= j, and

xfjj = (⊕fk∈V ({cjk} ⊗f x
f
kj))⊕

f {©1 }. (4)

The solutions xfij , i, j ∈ V, are sets of non-dominated vectors
for the non-dominance function f .

The componentwise order induces an efficiency that is
called Pareto efficiency:

(Pij , w(.), S,≤com).

In Pareto efficiency, the componentwise order definition re-
quires that the constituent metric sets be partially ordered, in
the least. The resulting product metric set S is again partially
ordered. Note that even if the constituent sets are totally or-
dered, in general, the product set is only partially ordered. The
non-dominance function f com yields the idempotent Pareto
efficient semiring (2S ,⊕fcom ,⊗fcom).

The lexicographic order induces an efficiency that we call
lexicographic efficiency. This differs from the commonly used
lexicographic optimality that appears in the literature [9]. We
denote the lexicographic efficiency by the tuple.

(Pij , w(.), S,≤lex).

Again, the lexicographic order definition requires the con-
stituent metric sets to be partially ordered and induces a
product set that is partially ordered. However, if the constituent
metric set is totally ordered, then so is the product metric set.
In this case, lexicographic efficiency reduces to lexicographic
optimality. We represent the idempotent lexicographic efficient
semiring by (2S ,⊕f lex ,⊗f lex).

The last efficiency that we consider is the max-order ef-
ficiency. It is also referred to as max-order optimality, for
reasons which will become obvious. Max-order efficiency is
represented by the tuple

(Pij , w(.), S,≤MO).

The definition of max-order requires the constituent metric
sets Sl, 1 ≤ l ≤ m to be totally ordered, and the product
set S = ×1≤l≤m is also totally ordered. This order is useful
only if the metrics are comparable directly, i.e., the different
components of the vectors are themselves comparable. The
idempotent path composition law becomes selective because
of this total order, i.e.,

x⊕f
MO

y =
{
x if x ≤MO y
y if y ≤MO x
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Order Type (≤) Definition Non-
Dominance
function (f )

Comments

Componentwise, x ≤com y x(i) ≤ y(i) i = 1, 2, . . . , m fcom Partially ordered constituent metric sets in-
duce a partially ordered product metric set

Lexicographic, x ≤lex y x(k) < y(k) or x = y ,where k = min{i : xi 6= y
i
} f lex ’’

Max-order, x ≤MO y max{x(1), x(2), . . . , x(m)} ≤ max{y(1), y(2), . . . , y(m)} fMO Totally ordered constituent metric sets in-
duce a totally ordered product metric set

TABLE II: Table of Orders and Induced Laws for x, y ∈ S = ×1≤l≤mSl

Depending on the properties of the composition rules
⊕f , ⊗f , the computational complexity of solving the ef-
ficiency SAPP differs. Consider the example of the bi-
objective/bi-metric sp problem introduced in Subsection III-D.
It is a two metric problem on a directed graph G(V,A) with
each metric in S1 = S2 = Ẑ+, and hence, S = Ẑ2

+. The
arc composition rule for [a1, a2]T , [b1, b2]T ∈ Ẑ2

+ is standard
vector addition, i.e., [a1, a2]T +[b1, b2]T = [a1 +b1, a2 +b2]T .
The path composition corresponds to finding Pareto efficient
solutions. Thus, this problem can be expressed as a SAPP in
(2Ẑ2

+ ,⊕fcom ,+P ). It is shown in Chapter 9 of [9] that the
bi-metric shortest path problem can be reduced to a Knapsack
problem, showing that the problem is NP complete. In essence,
this means that the problem is computationally hard to solve.
Thus as this example illustrates, even a simple arc composition
rule such as vector addition can make the problem intractable.
In the next section, we identify a class of arc composition rules
that can be solved for efficiency at affordable computational
cost.

V. A CLASS OF TRACTABLE MULTI-METRIC SAPPS

Let one constituent monoid, say without loss of generality
(S1,⊗1), be a partially ordered monoid. This means that there
is an order relation ≤ that is compatible with the internal law
⊗1:

a, b, c ∈ S1, a ≤ b⇒ a⊗1 c ≤ b⊗1 c.

For S′1 ∈ 2S1 , an element a ∈ S′1 is non-dominated in S′ if
there exists no other b ∈ S′1 such that b < a. We can define
the non-dominance function Min (corresponding to the partial
order in the constituent set S1):

S′1 ∈ 2S1 , Min(S′1) = set of non-dominated points in S′1.

The non-dominance function Min reduces to the minimum
function if S1 is totally ordered. The other constituent
monoids, (Sl,⊗l) 2 ≤ l ≤ m, are selective:

a, b ∈ Sl, a⊗l b = a (or) b, 2 ≤ l ≤ m.

This induces a total order on Sl, 2 ≤ l ≤ m. Boolean lattices,
(Ẑ+,min), (Ẑ+,max) are examples of monoid rules that are
selective. Since the set is totally ordered, we can define the
minimum of two elements of Sl, i.e.,

a, b ∈ Sl, min(a, b) = a ⇐⇒ a⊗l b = a.

The product monoid is assumed to be semiring compatible
with the idempotent path composition rule. We will show
that this product monoid, as constructed, when used for arc
composition yields an efficiency SAPP that is solvable for

all the different order relations introduced in Section IV. In
particular, we will show that for each of the idempotent laws
of the path composition, discussed in Section IV, there is
a special decomposition principle that decouples the rules
⊗l, 2 ≤ l ≤ m from ⊗1. To better illustrate this decomposi-
tion, we visit the Mobile Ad hoc Network (MANET) trusted
routing example described in [23], [22]. In this example, we
develop a bi-metric problem, involving the length (delay)
and the dual trustworthiness of paths. We will show that
the metrics can be combined in the different multi-criteria
settings introduced in Section IV, and we will provide solution
methods for the different efficiency SAPPs.

A. Trusted Routing: An Example

We will briefly describe the trusted routing problem in
MANETs. Most of the previous works on routing, inspired
from trust and reputation mechanisms, use only the trustwor-
thiness value to find optimal routes for packet forwarding
([4], [2], [14]). Such an approach might route packets through
high delay (length) paths. In many scenarios, high delays are
intolerable for the application traffic. To make the routers
sensitive to both delay and trust, we posed the problem as
a bi-objective graph optimization problem [22].

In ephemeral MANETs, all graph relations, trustworthiness
and length values are time varying. In the models we use,
although we do not explicitly mention the dependence on
time, it is assumed that all the relations and the values are
time varying. The trust relations form a directed labeled
graph G(V,A) called a trust relation graph. The arc set A
represents the trust relations. Let t(u, v) denote trustworthiness
value for (u, v) ∈ A. As illustrated in Subsection III-A,
the trustworthiness value t lives in a partially ordered set.
For this example, let us suppose the context corresponds to
the strength of the PGP certificate. For routing, we consider
only exploitative decisions and not exploratory decisions [22]:
route only using nodes whose trustworthiness is discovered
and not using the nodes whose trustworthiness is unknown.
Consequently, t ∈{untrusted (b), marginally trusted (c) and
fully trusted (d)}, which is a totally ordered set. In this context,
the arc composition is given by bottleneck trust [22]: The trust
of a path is limited by the minimal trust of any arc on the path.
The objective of trusted routing is to select paths with different
levels of trust (validity of key-user binding) for different types
of traffic. In essence, the path selection in this context is an
admission control policy that allows or disallows traffic flow
along a path.

For the bi-objective trusted routing problem, there are
two metrics, the delay and the trustworthiness of arcs. The
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delay lives in S1 = R̂+ and the trustworthiness lives in
S2 = {b, c, d}. We denote the dual-trustworthiness set by
S∂2 = {b∂ , c∂ , d∂} (with a covering relation d∂ ≺ c∂ ≺ b∂)
and the dual-trustworthiness of the arcs by t∂(u, v). For a path
p = (i = u1, u2, u3, . . . , un = j) in G, the delay of a path is
the sum of the delays along all arcs:

lp =
∑

(u,v)∈p

d(u, v), (5)

where d(u, v) is the delay of the arc (u, v) ∈ A. The
trustworthiness of a path is the strength of its weakest arc:

tp = min
(u,v)∈p

t(u, v)

It is useful to define the dual-trustworthiness of a path:

t∂p = max
(u,v)∈p

t∂(u, v). (6)

Note that the notion of dual-trustworthiness is helpful to for-
mulate the trusted routing problem as a bi-metric minimization
problem: the problem is to find paths with minimal length and
dual-trustworthiness in the multi-criteria setting. Equations (5)
and (6) are arc composition laws that can be expressed using
monoids (S1,+) and (S2,max) respectively. The product
monoid of arc composition satisfies the conditions of our
construction, introduced in the start of this section: (S2,max)
is selective and induces a total order in S2.

To study the different tradeoffs of this bi-objective problem,
we can pose the trusted routing problem as an efficiency
problem (introduced in Section IV) with these arc composition
rules:

(Pij ,
[
lp
t∂p

]
, S1 × S∂2 ,≤)

With different order relations (Table II), we obtain different
routing strategies: Pareto optimal routing, Biased routing and
conservative routing. In the rest of this subsection, we will
introduce these efficiency (routing) problems and present al-
gorithms to solve them.

Pareto Optimal Routing Strategy

The Pareto bi-objective efficiency is

(Pij ,
[
lp
t∂p

]
, S1 × S∂2 ,≤com).

One of the common methods to compute Pareto non-
dominated points is using the Haimes-ε constraint method
([13], [5]), which converts all but one of the objectives into
constraints and solves the single-objective constraint optimiza-
tion problem. By sweeping across different constraints, we
obtain all the Pareto solutions.

Semiring Decomposition: For the trusted routing problem,
we show that the Haimes-ε constraint method lends itself to
a natural decomposition that separates the length and trust
monoid rules. The Haimes formulation is:

min
p∈Pij

lp (7)

t∂p ≤ ε, ε ∈ S∂2 . (8)

The constraint t∂p ≤ ε ⇒ max
(u,v)∈p

t∂(u, v) ≤ ε

⇒ t∂(u, v) ≤ ε,∀(u, v) ∈ p.

This implication gives the following decomposition.
Subproblem 1(ε): Find the subset of paths in Pij whose arcs
have a dual trustworthiness at most ε. This corresponds to
finding a pruned subset

PPruned−ε
ij = {p ∈ Pij : t∂(u, v) ≤ ε, ∀(u, v) ∈ p}

Subproblem 2(ε):
min

p∈P Pruned-ε
ij

lp

The decomposition is evident because Subprob 1(ε) involves
only the dual trust and Subprob 2(ε) involves only the path
length. We show that Subprob 1(ε) can solved using a simple
arc-exclusion algorithm, Algorithm 1.

Algorithm 1 Compute pruned path set PPruned−ε
ij

input: G
Remove all arcs (u, v) ∈ A in G with t∂(u, v) > ε to form
a reduced graph Gr(ε)
PPruned−ε
ij ← set of paths between i and j in Gr(ε)

return PPruned−ε
ij , Gr(ε)

Proposition 5.1: The set of paths returned by Algorithm 1,
PPruned−ε
ij , solves Subprob 1(ε).

Proof: By construction, none of the arcs (u, v) in Gr(ε)
have t∂(u, v) > ε. Consequently, all paths have arcs (u, v)
whose t∂(u, v) ≤ ε.

Algorithm 2 works on the reduced graph Gr(ε) to obtain
all the Pareto efficient paths between a source destination
pair i, j: The algorithm runs a shortest path routine on the
pruned path set PPruned−ε to find weakly Pareto efficient
paths P candidate. Then the Pareto efficient path is picked up
from this candidate set P candidate. Then the algorithm makes
use of the finite structure of S2 to traverse the non-dominated
frontier: It traverses through a sequence of covered elements
and terminates when the reduced graph Gr(ε) becomes dis-
connected. It returns the Pareto efficient paths P efficientij . In
Algorithm 2, Covered Element(x) returns the covered element
of x ∈ S∂2 .

Proposition 5.2: Algorithm 2 returns all the Pareto efficient
paths in G.

Proof: Lemmas 3.1 and 3.2 guarantee the existence of
the top and the cover element used in the algorithm. Since S∂2
is finite, the sequence of covers returned by repeated calls of
the function Covered Element in Algorithm 2 is also finite.
Consequently, the algorithm terminates in a finite number of
iterations/steps.

First, we show that Pefficientij contains only Pareto efficient
paths in G. Suppose p ∈ P efficientij is not efficient. This

implies that there exists q ∈ Pij , q 6= p such that
[
lq
t∂q

]
<[

lp
t∂p

]
. Here two cases are possible.
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Algorithm 2 Compute All Pareto Paths

P efficientij ← ∅
ε← >
repeat
P candidate ← arg min

p∈PPruned−ε
ij

lp

pefficient ← arg min
p∈P candidate

t∂p

P efficientij ← P efficientij ∪ peffecient
ε← Covered Element(t∂pefficient )

until PPruned−ε
ij 6= ∅

return P efficientij

Case I: lq < lp and t∂q ≤ t∂p .
t∂q ≤ t∂p implies that if p ∈ PPruned−ε, then q ∈ PPruned−ε.
If lq < lp, then p 6∈ P candidate, which is a contradiction.
Case II: lq ≤ lp and t∂q < t∂p .
If p ∈ PPruned−ε, then q ∈ PPruned−ε. If lq < lp, then
p 6∈ P candidate. This implies lq = lp. Since p ∈ P candidate,
we have q ∈ Pcandidate. Then pefficient 6= p because t∂q < t∂p .
Since both cases contradict, we have that p is Pareto efficient.

Next, we show that there are no more Pareto paths other
than those in P efficientij . Suppose q 6∈ P efficientij is a Pareto
path. Suppose that ε1 = > > ε2 > ε3 > · · · > εN be the finite
sequence of ε’s returned by the Covered Element function in
Algorithm 2. Let εk+1 < t∂q ≤ εk for some k. Consider the
iteration when ε = εk. There are two cases when q is not
chosen in P efficientij .

Case I: q 6∈ P candidate.
Let q′ = pefficient be the efficient path chosen at this iteration.
Clearly, lq′ < lq . Consider the sub-case t∂q′ ≤ t∂q , then[
lq′

t∂q′

]
<

[
lq
t∂q

]
. This implies that q is dominated by q′

and hence is not a Pareto path.
The other sub-case is t∂q′ > t∂q . By definition, Covered

Element gives εk+1 ≺ t∂q′ . But εk+1 < t∂q ⇒ t∂q = t∂q′ , which
is, again, a contradiction.

Case II: q ∈ P candidate.
Again let q′ = pefficient be the efficient path chosen at this
iteration. In this case, lq′ = lq . Then, only q′ or q can be
Pareto efficient, but not both. This is again a contradiction
and this completes the proof for the reverse implication. Hence
P efficientij contains all the Pareto efficient paths and nothing
other than the Pareto paths.

Note that the Algorithm 2 can be implemented in poly-
nomial time complexity. Algorithm 2 uses arc exclusion to
generate PPruned−ε

ij , which can be implemented in O(|V |2)
time complexity. It makes use of the shortest path procedure
to compute P candidate, which can be implemented in O(|V |3)
time complexity. In the worst case, the repeat-until loop
in Algorithm 2 iterates over all the covering relations of
S2. So the worst case time complexity of the algorithm is
O(|S2|.|V |3).

Biased Routing Strategy

This lexicographic efficiency class is represented by

(Pij ,
[
lp
t∂p

]
, S1 × S∂2 ,≤lex)

Based on the lexicographic ordering that we choose, we
obtain length or trust biased routing strategies: The strategies
that consider the length or the trust as superior metrics,
respectively. It is well known that these lexicographic optimal
paths can be solved at affordable complexity [22]. In this
paper, we only present the semiring algebra for the length-
lexicographic semiring. This problem is referred to as the
shortest-widest path problem [12].
Length-Lexicographic Semiring: (S = S1 × S∂2 ,⊕,⊗).
The semiring operations are defined as follows. For
(d1, t1∂), (d2, t2∂) ∈ S we define:

(d1, t1∂)⊕ (d2, t2∂)

=

 (d1, t1∂) if d1 < d2
(d2, t2∂) if d2 < d1

(d1,min(t1∂ , t2∂) if d1 = d2

(d1, t1∂)⊗ (d2, t2∂) = (d1 + d2,min(t1∂ , t2∂))

It is shown that the SAPP problem for this semiring can
be solved in a distributed manner [22]. The algorithm can be
implemented using generalized Jacobi iterations in O(|V |3)
time complexity.

Conservative Routing Strategy

Another efficiency for bi-objective optimization is the Max-
Ordering (MO) method ([9]). However, this method is appli-
cable to trusted routing only if the trustworthiness values and
the path lengths are comparable. If they are, then we obtain a
conservative routing strategy. This is represented by the tuple

(Pij ,
[
lp
t∂p

]
, S1 × S∂2 ,≤MO)

The above efficiency tries to select paths that are optimal in the
worst-case sense of trust and delay. Thus it is a conservative
strategy for routing, where the cost of the path is governed by
the worst-case value of its trust and delay. The corresponding
optimization problem is given by

min
p∈Pij

max{lp, t∂p} (9)

Semiring Decomposition: The MO problem involves the trust
and length arc compositions. We present a decomposition
method to separate the semirings. Equation (9) can be written
as

min
p∈Pij

z

lp ≤ z
t∂p ≤ z

Again, the decomposition yields an arc exclusion (Algorithm
1) and a shortest path procedure to obtain the MO paths.
This is illustrated in Algorithm 3. The algorithm assigns an
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Algorithm 3 Compute MO paths

z ← ⊥
while True do
pcandidate ← arg min

p∈PPruned−ε
S,T

lp

if lpcandidate ≤ ε then
return pcandidate

end if
if ε =?> then

return No path found
end if
ε← Covering Element(ε)

end while

infinite cost to a non-existent path. In Algorithm 3, Covering
Element(x) returns the covering element of x ∈ S∂2 .

Proposition 5.3: The path returned by Algorithm 3 is MO
optimal in G.

Proof: Since the sequence of ε’s is monotone and S2 is
finite, the algorithm converges. When the algorithm terminates,
pcandidate has lpcandidate ≤ ε and t∂pcandidate ≤ ε. And ε ∈ S∂2
is the smallest element for which this condition is satisfied.
Thus pcandidate upon termination is MO optimal.

Similar to the Pareto optimal routing algorithm, the time
complexity of this algorithm is O(|S2|.|V |3).

The algorithms proposed in this section use the shortest path
and arc exclusion routines repeatedly. This is a manifestation
of the semiring decomposition. There are many other efficient
polynomial-time distributed implementations for both of these
routines [15]. Thus all these algorithms can be efficiently
implemented in a self-organised MANET.

In all the algorithms discussed in this subsection, we have
posed the selective arc composition, dual trust, as a constraint
to obtain a reduced graph. Solving the SAPP for the other
arc composition, path length, in the reduced graph yields
the desired solution. Now, we return to the product monoid
constructed in the start of this section, and we extend the above
three algorithms for the general case. The fundamental idea,
again, is to decouple the selective monoids (Sl,⊗l), 2 ≤ l ≤
m from the arbitrary monoid (S1,⊗1) by graph reduction and
then to solve the SAPP on the reduced graph for the arbitrary
monoid.

B. Pareto Efficiency

Consider the Pareto efficiency

(Pij , w(.), S,≤ com).

The aggregate metric set for a pair of vertices i, j ∈ V for
Pareto efficiency is

xf
com

ij = ⊕f
com

p∈Pijw(p).

To apply the Haimes-ε constraint method, we need to extend
it to handle partially ordered sets. The extended version of the
Haimes-ε constraint method for the aggregate metric between

vertices i, j ∈ V :

Minp∈Pij wp(1) (10)
subject to wp(2..m) ≤ ε,

where ε ∈ ×2≤l≤mSl. Any solution to Equation (10) is in
the non-dominated aggregate metric set xf

com

ij . The proof is
similar to the standard Haimes-ε constraint method. Sweeping
across different ε’s we can obtain all the non-dominated
solutions [9].

Applying the constraint method to the product monoid
of interest decouples the constraints from the objective in
Equation (10). The constraint wp(2..m) ≤ ε implies that for
a feasible path p = (i = u1, u2, . . . , un = j) ∈ Pij , for
2 ≤ l ≤ m,

cu1u2
(l)⊗l cu2u3

(l)⊗l · · · ⊗l cun−1un(l) ≤ ε(l − 1)
⇒ min(cu1u2

(l), cu2u3
(l), . . . , cun−1un

(l)) ≤ ε(l − 1)
⇒ cukuk+1

(l) ≤ ε(l − 1) 1 ≤ k < n.

This implies that all the arcs along a feasible path must have
cuv(2..m) ≤ ε; all paths that have arcs (u, v) ∈ A with cuv >
ε must be discarded in searching for the non-dominant paths.
The pruned set of paths can be obtained from a reduced graph,
which is constructed by arc exclusion similar to Algorithm 1.
For the general Pareto efficiency, this corresponds to replacing
the arc metrics with ©0 for arcs (u, v) that have cuv > ε. The
absorbing property of ⊕ ensures that such paths are discarded
while searching for non-dominant paths. It is convenient to
define a modified arc metric

cεuv =
{
cuv if cuv(2..m) ≤ ε
©0 otherwise

The problem with modified weights cεuv corresponds to the
reduced graph. Let us denote the modified weights of the path
by wεp. Then the problem

Minp∈Pijw
ε
p(1)

yields a non-dominated solution. To obtain all the non-
dominated solutions, specialized search methods that depend
on the structure of the S should be employed. If the sets
Sl, 2 ≤ l ≤ m, are countable, then we can apply the same
traversal algorithm of Subsection V-A to obtain all the Pareto
efficient paths.

C. Lexicographic Efficiency

Lexicographic efficiency is given by the tuple

(Pij , w(.), S,≤ com).

The aggregate metric problem for a pair of vertices i, j ∈ V
for the Lexicographic efficiency is

xf
lex

ij = ⊕f
lex

p∈Pijw(p).

The arc composition/product monoid of interest has a
special structure that allows us to construct the following
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semiring. The product monoid with the lexicographic ordering,
for A,B ∈ 2S yields a componentwise computation:

D = {d ∈ A ∪B : d(1) ∈ Min(e(1) : e ∈ A ∪B)}
d′, d′′ ∈ D,

d′ ⊕f
lex

d′′ =


d′ if d′(1) < d′′(1)
d′′ if d′′(1) < d′(1)
d′ if d′(1) = d′′(1)

and d′(2.., ) ≤lex d′′(2..n)
d′ ∪ d′′ if d′(1)||d′′(1)

This reduces the complexity of the path composition: For
composing two path sets A,B ∈ 2S , first, identify the set
of paths D that is non-dominant in the first component
wp(1), then for the comparable vectors apply the lexicographic
ordering. The arc composition follows the standard Minkowski
product.

D. Max-Order Optimality

Since the max-order optimality needs a total order on S, the
most general version is that shown in the example of trusted
routing. The max-order efficiency/optimality is given by the
tuple

(Pij , w(.), S,≤max).

For the multi-metric problem, the max-order efficiency can be
posed as an optimization problem:

min
p∈Pij

z

wp(l) ≤ z 1 ≤ l ≤ m.

This problem can be solved by the method proposed in
Subsection V-A.

VI. CONCLUSION

We have developed a common framework to study multi-
metric network problems specified using rules, where the
metrics can be traditional network parameters such as delay
or logical parameters such as trust. We have formulated path
composition rules from multi-criteria optimization theory and
shown that these rules can be viewed as instances of an
idempotent SAPP called the efficiency SAPP. For each of the
different order relations, used in multi-criteria optimization,
we show that this efficiency SAPP yields different forms of
efficiency, i.e., Pareto, lexicographic and max-order efficiency.
We also identify an arc composition rule that is solvable
in each of these efficiencies with affordable computational
complexity. As an application of this arc composition rule,
we show that it can be applied to trusted routing in MANETs.
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