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Need: Technical tools:

« Compositionality o Passivity
« Composability o Symmetry
o Scalability « Event-triggered schemes

« Robustness to uncertainty o Anytime schemes



Scalability of performance

« Beyond stability, need performance

—

Initial condition
x(0)

Controller Process

« Choose classical metric of sensitivity—2 2 p — 5 L

to disturbance

o Fundamental performance

limitation: Sensitivity (from random
disturbance to error) cannot be

reduced at all frequencies
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« Holds for any second moment

stabilizing controller ter bed effoct

« Many extensions in the literature



Performance in large scale systems
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o In general, a hard problem (related to

distributed control)

o Interesting issues related to information

transfer and usage

« How to design controllers?

« How to design information flow topologies?

 Focus on fundamental performance limitations
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1-D Formations

e Maintain constant spacing wrt

predecessor

o Independent interest in vehicle

platooning applications

o Cost (or error) graph and information

flow graph identical

o Error propagation due to coupled cost




Prior Work

Spacing Spacing Spacing
error | error 2 error 1

o String stability (Peppard (1974), Swaroop and Hedrick (1996))

 Disturbance propagation performance (Seiler et al (2004), Middleton and
Braslavasky (2010))
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Summary of Results

« We consider the sensitivity of the agents’ position (error) with respect to an

external disturbance affecting the leader

« Obtain a generalization of Bode’s integral formula to distributed systems in this

setting

« Fundamental limitation that holds for any plant, non-linear controllers,

information flow across finite capacity channels

e Use information theoretic tools to obtain a result in distributed control



Problem Framework

Channel — Capacity C,
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For i-th SISO process
ZL; (k) = A.i.’B.i (k‘ — 1) -+ B.iu.i (k‘ - 1)
yi(k) = Cizi(k)
Errors
eo(k) = ro(k) + d(k) — yo(k)
ei(k) = yi—1(k) —yi(k) — s 1<i<M

Cost function

Sde, (W) = \/ (Z)d ((:) ¢(w): power spectral density g



Technical Assumptions

Channel — Capacity C,

7 £0(0) 5 1(0) 5 z;(0)
] | , | , , |
€o K, Uo P, 0, " €1 K, U1 P, 1 Yi—1 €; K Ui P

< < -

o Disturbance is AWGN, independent of initial conditions

o Initial conditions define a Markov chain

o All subsystems are closed loop mean squared stable, observable
o All processes are strictly proper

 Control is deterministic, piecewise continuous, bijective function of own

error; can be time-varying, non-linear and with internal state



Main Result

Channel — Capacity C,

r gio(()) 5 gil(()) 5 af(0>
d €0 K, Uo P, ?JO=_|_ €1 K, uy P, v Yi—1 €; k. LYl p Yi |

il | il
Foranyi=0,1, ...

i—1
1 T
3 | g Sua(@)d =3 (3 loBl8l+P+K—C) 4 3 loglA|-C.

j=0 BEUZ; AEUP;

where

P = log | lim,0c 2% Pi(2)], Ki=liminfyooo & S po E(log |u] (75, €)])
® Special case i = 0 recovers traditional Bode integral formula

® Channels reduce RHS, but there is a saturation effect

® Achievable in special (although non-trivial) cases 10



Illustration

1
Consider the process H(s) = 2(0.1s + 1) discretized with a step size 0.25

2s +1
K(s) = K, K =1,K,=05
(5) 0.055 + 1 1 2

Error propagation performance of K, -- noise-free case
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Illustration

1
Consider the process H(s) = 2(0.1s + 1) discretized with a step size 0.25
25+ 1
K(s) = K; : Ki=1,Ky,=0.5
(8) = K5 055 + 1 : ?

Error propagation performance of K. -- AWGN case
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Illustration

Specific Gaussian setting in which sensitivities can be calculated analytically

G
Lower bound vs Integral log sensitivity
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Performance Scalability

Channel — Capacity C,
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Error propagation performance of K, -- AWGN case
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o Passivity, LQG notions




Algorithms for Limited Processor Availability
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o Anytime control algorithms

 Event triggered control



Quevedo and Gupta, TAC 2013
LaSt Year Gupta and Luo, TAC 2013
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o Anytime algorithms for control (a priori unknown execution time)

o Basic idea: Use coarse model of the process to generate a control input; then progressively

use more complicated models to refine the input

o Linear processes, RHC based extension, non-linear processes

16
o Provable stability and performance guarantees



This Year

® Distributed systems

® Event-triggered priority among control inputs



Basic Idea
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How to transfer tasks?

® Push mechanism v/s Pull mechanism
® Need distributed policies, but global guarantees

® We study stochastic pull strategies



A Stochastic Pull Algorithm

e We define a random sequence {#4;}n, (referred as strategy
sequence) to indicate if agent i helps agent j or receives
help from j at time &, for all i, j € {1, ..., N} as:

hi(k) = (i,j), if controller i helps j at time k ,
hi(k) = (j,i), if controller i receives help from j at time k .

hi(k) 20, if controller i neither provides nor receives help.

® Assume these three events are mutually exclusive and exhaustive.
® Moreover this sequence is i.i.d. with defined probability distribution.

® Controller can calculate a buffer of inputs if extra time available.



Model and Analysis

® The number of control inputs in the buffer of agent i follows a Markov

chain.

® The agent then evolves as a Markovian jump system

’

fi(xi(k)vop)v if Zi(k) =0,
Fi(k), ki), i Zi(k) € {1,2,.., A},

® Stability can be assessed using standard tools
E{Vi(xi(k + 1)) | xi(k) = xi, Zi(k — 1) =5} < Q%) Vilxi)

Vi € R", ke Ny, i € {1,2,....N}, 5€{0,1,2,....,A}

xi(k+ 1) = <

where
(5) = gy + Z qsspi-

® Coupled dynamics require a relaxation



Optimizing the Pull Algorithm

® (Can now optimize convergence rate with respect to the task transfer

probabilities
e Given ay, pi,plyi € {1,...N},1€{0,1,...,A},

maximize > icry vy Uil + A =3 5ero 4y $(5))
subjectto 0 < ¢. <1, i€ {l,..,N}, (5,5) €S xS,
0<pi<l, ije{l,...N},
Q;(5) <1, ie{l,...,N}, 5€{0,1,2,...,A},
0 <D pen,Pab <1, bEN,
0 <D cen,Phe <1, b ENy,

Zaerpab + chNbpbc +p[fv =1, beN,,
(7)

where the utility function U;(-) is a concave and increasing
function, e.g., \/(:) and log(-).

® Can optimize in a distributed online fashion using dual decomposition with

subgradient method



Example

® TrueTime simulation for two agent trajectory following when agent 2’s processor

is overloaded

e Agent 1 does not help Agent 2 (p;, = 0).

e Agent 2 is not stable.
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e Agent 1 helps Agent 2 (p;; = 0.5).
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Algorithms for Limited Processor Availability
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® Middleware

® Timing and synchronization



Passivity in the presence of uncertainty

Fame Actuator Process Sensor

Network

A

Controller P

— Packet loss (through TDMA protocols or network effects)
— Basic problem: system may not be passive in open loop

z(k+1) = f(z(k),u(k)) if pa»Ck?t received
f(z(k),0) otherwise
— Contributions:
« Extended passivity definition

« Conditions for retaining passivity

« A more general theory of passivity of switched systems



Basic Idea

z(k+1) = f(z(k), u(k))
y(k) = h(z(k), u(k))

® Traditional definition does not allow open loop non passive system
V(z(k +1)) — V(z(k)) < u' (k)y(k)

® Extensions to switched systems (Zhao and Hill) assume every mode to be

passive

A

®  Our idea: require

u"(k)y({) V(z(k)) — V(z(0)) SZ

V\
Viek) , .
nergy stored can increase

v

O
0 1 2

temporarily



Wang, Gupta, and Antsaklis, TAC 2012 (submitted)

With the New Definition

— Definition reduces to traditional definition for all modes passive

— Preserves nice properties of passivity (L-2 stability, feedback etc)
Theorem: Let

V(f(z(k),0)) <xV(z(k)
V(f(z(k),u(k)) <oV (z(k)).

If the ratio of closed loop to open loop instances at any time T satisfies

(T—1)Iny
T(T) > Original Switched System
Oy 7T T T T T T T T T T T T T T T T T T T T T T T T T
ln X — T ln ) V(x(T)) - V(x(1))

- = =i ul(k)y(k)

then system is locally passive around origin.
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This Year

— Extended definition to multiple passive, feedback passive, and non-passive

modes

— Modeled network as a stochastic system, possibly with memory: need a

theory of stochastic passivity

— Using stochastic switching among controllers, improving performance while

remaining passive



Generalized Feedback Passivity

— If modes can be passive, feedback passive, or non-passive, then the definition

can be generalized
— Use only one storage function for all modes

— A switched nonlinear system is locally feedback passive if and only if its zero

dynamics are locally passive

Theorem 6.1: Design the switching signal such that

K_(O,T) S In Ly —In Ly

41
K+(0,7) " InLy—InL;’ )

where Lo € (L1,1), K—(0,T) is the total activation time of the passive and feedback passive modes, and
K7T(0,T) is the total activation time of the non-feedback passive modes during time interval [0, 7)), VT €

{0} U Z~. The zero dynamics (12) are passive under the switching signal (41).

— Oftline vs online switching



Passivity of Markovian Jump Nonlinear Systems

® For the system

X(k+1) = fouw (x(k), u(k)),

define passivity as existence of suitable functions such that
B[V (x(k+ 1),k +1))a(k), o (k)] = V(x(k),o (k) < y" (k)u(k).
® Passivity indices can be defined similarly

ElV(x(k+1),0(k+1))|z(k),o(k)] — V(x(k),o(k))

< (1 + popyVour))y' (B)u(k) = poiyy” (B)y(k) — vogmu' (k)u(k).



Developments with this definition

® Consistent with usual definitions for non-stochastic systems

® Can develop usual stability and interconnection results

Theorem 1: If the discrete-time Markovian jump nonlinear system (1) is locally passive, then it is

locally@stable in p@

Theorem 3: If system (1) is locally state strictly passive with a,||z(k)|]? < V(z(k),q) < a||z(k)||?

and S(z(k),i) > c¢;||z(k)||? for all x(k) € D and some o; > a; > 0, ¢; > 0, then it is locally

@callv stabD

Theorem 4: Let system (1) be locally passive and zero-state detectable. Then, the output feedback

control law © = —(y) with ¢ : R™— R™ being any first/third sector function (i.e., y* p(y) > 0 Vy # 0

and (0) = 0), renders the equilibrium locallycasymptotically stable in probability.
Corollary 1: If system (1) is IFP(v) and OFP(p) and p > 0, then it is input-output Lo stable with Lo

gain v < max(1/|p|, [v]).

Theorem 2. ~The parallel and feedback int@ two locally passive Markovian jump

nonlinear systems (as shown in Fig. 1), with the stochastic processes (x1(0),01) and (x2(0), o2) being

mutually independent, remain locally passive.



Feedback Passivation

® Passifying using feedback control requires minimum phase for linear

systems

® For MJLS, allow control to be mode specific

u(k) — Ea(k)X(k) + Fa(k)v(k)a

® Main result: feedback passivation requires the system to be strictly

minimum phase (i.e. the zero dynamics should be mean squared stable; not

merely in probability)



Conditions involving Stochastic Conic Systems

® Can also generalize to conic systems

Definition 10: An operator H (w,u) with w representing a zero-mean stochastic process with mutually
independent random variables w(k) and E ||w||? < oo, is stochastically interior conic with respect to

f(w) if there exist real constants > 0 and ¢ such that for Vu € U, the inequality
B ||H (w,u) = cul[* < r?[[ul| (33)

is satisfied. Similarly, H(w,u) is stochastically exterior conic if E ||H (w,u) — cul|? > r2||u||?.

® Probabilistic interpretation

E||H(w,u) — cul|? 1
Pr(HH(w,u) o CUH > m“HuH)) < nQTQHUHQ < ﬁ

® Consistent with the passivity indices definition proposed earlier



Controller Switching for Performance

® Finding a controller that is passifying while optimizing a performance

criterion is known to be hard

® We bypass this problem by switching between two controllers: a passifying

controller and an optimizing controller

® The frequency of usage of the two controllers is the design parameter

Performance

v

Frequency Passivity margin



Illustration

r(k+1) = x(k) + | u(k),

y(k) = [ 0.5 —3 ] x(k) + 0.2u(k).

« LQG optimal controller:

uy (k) = [ 0.8864 —0.696 ] z(k) +v(k).
o A passifying controller:
us (k) = [ 2.5252 —15.3605 ] r(k) +v(k).

Suppose at every time, we apply u; with prob. p and us with prob. 1 — p.



Illustration

Stochastic passivity requires small p (p<0.1)

'‘Good' performance requires large p:

Trade off?

Performance Metric

0 0.2 04 0.6 0.8 1
Probability
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Next Steps
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