
Some Further Directions 

Panos J. Antsaklis, Bill Goodwine, and Vijay Gupta 

NSF CPS Large Project Meeting, 2013 

Joint work with Y. Wang, M. Xia, Y. Zhao 



Overview 

Networking 

Physical 
System 

CPS 

So!ware 

Need: 
•  Compositionality 
•  Composability 

•  Scalability 
•  Robustness to uncertainty 

Technical tools: 
•  Passivity 
•  Symmetry 

•  Event-triggered schemes 
•  Anytime schemes 



•  Beyond stability, need performance 
•  Choose classical metric of sensitivity 
to disturbance 

•   Fundamental performance 
limitation: Sensitivity (from random 
disturbance to error) cannot be 

reduced at all frequencies 

 

•  Holds for any second moment 
stabilizing controller  

•  Many extensions in the literature 

Scalability of performance 
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Performance in large scale systems 

•  In general, a hard problem (related to 
distributed control) 

•  Interesting issues related to information 
transfer and usage 

•  How to design controllers? 
•  How to design information flow topologies? 

•  Focus on fundamental performance limitations 
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1-D Formations 
•  Maintain constant spacing wrt 
predecessor 

•  Independent interest in vehicle 
platooning applications 

•  Cost (or error) graph and information 
flow graph identical 

•  Error propagation due to coupled cost 



Prior Work 

Car Platoon Systems


…
d

Spacing 
error 1


Spacing 
error 2


Spacing 
error i


Automated Highway Systems


•  String stability (Peppard (1974), Swaroop and Hedrick (1996)) 
•  Disturbance propagation performance (Seiler et al (2004), Middleton and 
Braslavasky (2010)) 

Related Literature


•  Stability analysis

–  Chu (1974), Peppard (1974), Swaroop and Hedrick (1996)


•  Disturbance propagation performance

–  Seiler, Pant, and Hedrick (2004),  Middleton and Braslavsky (2010)


Predecessor 
following 
strategy


Predecessor 
and leader 
following 
strategy


•  These previous works focus on specific plants and controllers. We provide 
fundamental performance results that hold for any plant
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Summary of Results 

•  We consider the sensitivity of the agents’ position (error) with respect to an 
external disturbance a#ecting the leader 

•  Obtain a generalization of Bode’s integral formula to distributed systems in this 
setting 

•  Fundamental limitation that holds for any plant, non-linear controllers, 
information flow across finite capacity channels 

•  Use information theoretic tools to obtain a result in distributed control 
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Problem Framework 

For i-th SISO process 

Errors 

Cost function 

Communication Channels


•  The leader channel output is communicated to the i-th follower, i=2,3,…, over a 
communication channel of finite Shannon capacity Ci
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•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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Technical Assumptions 

•  Disturbance is AWGN, independent of initial conditions 

•  Initial conditions define a Markov chain 

•  All subsystems are closed loop mean squared stable, observable 

•  All processes are strictly proper 
•  Control is deterministic, piecewise continuous, bijective function of own 

error; can be time-varying, non-linear and with internal state 

Communication Channels


•  The leader channel output is communicated to the i-th follower, i=2,3,…, over a 
communication channel of finite Shannon capacity Ci
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•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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Main Result 

Motivation Problem Formulation Main Result Example Conclusions and Future Work

Main Result

Communication Channels


•  The leader channel output is communicated to the i-th follower, i=2,3,…, over a 
communication channel of finite Shannon capacity Ci


K0
 P0


r

d e0

x0(0)

y0
K1
 P1


y1

x1(0)

e1

�

…
u0 u1 Ki
 Pi


�

u
i

y
iy

i�1

x
i

(0)

e
i

Channel – Capacity Ci


•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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• There is a saturation e↵ect: The reduction is no greater than the loop gain
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Communication Channels


•  The leader channel output is communicated to the i-th follower, i=2,3,…, over a 
communication channel of finite Shannon capacity Ci
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•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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For any i = 0, 1, … 

•  Special case i = 0 recovers traditional Bode integral formula 
•  Channels reduce RHS, but there is a saturation e#ect 
•  Achievable in special (although non-trivial) cases 
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Illustration 

Consider the process                                    discretized with a step size 0.25   
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Illustration 

Consider the process                                    discretized with a step size 0.25   
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Illustration 
Numerical Example


Specific Gaussian setting where the sensitivity can be evaluated analytically
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Lower bound vs  Integral log sensitivity


Specific Gaussian setting in which sensitivities can be calculated analytically  
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Performance Scalability 

Motivation Problem Formulation Main Result Example Conclusions and Future Work

Main Result

Communication Channels


•  The leader channel output is communicated to the i-th follower, i=2,3,…, over a 
communication channel of finite Shannon capacity Ci
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•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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•  Obtained information theoretic 
bounds on performance in strings 

•  Current work: process noise, cyclic 

graphs 

•   Passivity, LQG notions 



Algorithms for Limited Processor Availability 

•  Anytime control algorithms 
•  Event triggered control 
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Last Year 

•  Anytime algorithms for control (a priori unknown execution time) 

•  Basic idea: Use coarse model of the process to generate a control input; then progressively 
use more complicated models to refine the input  

•  Linear processes, RHC based extension, non-linear processes 

•  Provable stability and performance guarantees 

Process Sensor Actuator 

Controller 

Pr
oc

es
si

ng
 

po
w

er
 

Time 

Provided by 
microprocessor 

Required by 
control 
algorithm 

Quevedo and Gupta, TAC 2013 

Gupta and Luo, TAC 2013 



!is Year 

•  Distributed systems 
•   Event-triggered priority among control inputs 



Basic Idea 

Physical 
dynamics 

Physical 
dynamics 

Physical 
dynamics 

Controller 
design 

Controller 
design 

Controller 
design 

Controller 
code 

Controller 
code 

Controller 
code 

Coupling through 
dynamics or 

environment 

Coupling through 
dynamics or 

environment 

Coupling through 
communication 

Coupling through 
communication 

Coupling through 
task transfer 

Coupling through 
task transfer 

Introduction

• Processor Cooperation Algorithm

3



How to transfer tasks? 

•  Push mechanism v/s Pull mechanism 

•  Need distributed policies, but global guarantees 
•  We study stochastic pull strategies 



Processor Cooperation Scheme

• We define a random sequence {h

i

}N
0

(referred as strategy
sequence) to indicate if agent i helps agent j or receives
help from j at time k, for all i, j 2 {1, ...,N} as:

h

i

(k) , (i, j), if controller i helps j at time k ,

h

i

(k) , (j, i), if controller i receives help from j at time k .

h

i

(k) , 0, if controller i neither provides nor receives help.

12

•  Assume these three events are mutually exclusive and exhaustive. 
•  Moreover this sequence is i.i.d. with defined probability distribution. 

•  Controller can calculate a bu#er of inputs if extra time available. 

A Stochastic Pull Algorithm 



•  %e number of control inputs in the bu#er of agent i follows a Markov 
chain. 

•  %e agent then evolves as a Markovian jump system 

Model and Analysis 

Markovian Jump System

• The corresponding Markovian Jump System is

x
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(4)
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Stability

•
Theorem 1: Suppose that Assumptions 1 to 5 hold. We

then have

E
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⌦
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X
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⇢
i
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•  Stability can be assessed using standard tools 
 

•  Coupled dynamics require a relaxation 



•  Can now optimize convergence rate with respect to the task transfer 
probabilities 

Processor Cooperation Optimization

• Given ↵
i

, ⇢
i

, p
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l
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P
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where the utility function U

i

(·) is a concave and increasing
function, e.g.,

p
(·) and log(·).

19
•  Can optimize in a distributed online fashion using dual decomposition with 

subgradient method 

Optimizing the Pull Algorithm 



•  TrueTime simulation for two agent trajectory following when agent 2’s processor 
is overloaded  Numerical Examples (Trajectory Following))

• Agent 1 helps Agent 2 (p
12

= 0.5).
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Numerical Examples (Trajectory Following))

• Agent 1 does not help Agent 2 (p
12

= 0).

• Agent 2 is not stable.

−10 0 10 20 30
−20

0

20

40

X

Y

 

 
Agent1

Agent2

34

Example 



Algorithms for Limited Processor Availability 

Physical 
dynamics 

Physical 
dynamics 

Physical 
dynamics 

Controller 
design 

Controller 
design 

Controller 
design 

Controller 
code 

Controller 
code 

Controller 
code 

Coupling through 
dynamics or 

environment 

Coupling through 
dynamics or 

environment 

Coupling through 
communication 

Coupling through 
communication 

Coupling through 
task transfer 

Coupling through 
task transfer 

•  Middleware 

•  Timing and synchronization 



Passivity in the presence of uncertainty 

 

–  Packet loss (through TDMA protocols or network e#ects) 

–  Basic problem: system may not be passive in open loop 

–  Contributions: 
•  Extended passivity definition 
•  Conditions for retaining passivity 
•  A more general theory of passivity of switched systems 

Process Sensor Actuator 

Controller 

Network 



Basic Idea 

•  Traditional definition does not allow open loop non passive system 

•  Extensions to switched systems (Zhao and Hill) assume every mode to be 

passive 

0 2 

•  Our idea: require 

•  Energy stored can increase 
temporarily 

1 



With the New Definition 

–  Definition reduces to traditional definition for all modes passive 
–  Preserves nice properties of passivity (L-2 stability, feedback etc) 

Wang, Gupta, and Antsaklis, TAC 2012 (submitted) 



!is Year 
–  Extended definition to multiple passive, feedback passive, and non-passive 
modes 

 

–  Modeled network as a stochastic system, possibly with memory: need a 
theory of stochastic passivity 

–  Using stochastic switching among controllers, improving performance while 
remaining passive 



Generalized Feedback Passivity 
–  If modes can be passive, feedback passive, or non-passive, then the definition 
can be generalized 

–  Use only one storage function for all modes 
–  A switched nonlinear system is locally feedback passive if and only if its zero 
dynamics are locally passive 

 

–  O&ine vs online switching 
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





0 ≤ Lσ < 1 if σ ∈ S2
⋃

S∗
1

Lσ ≥ 1 if σ ∈ S1 \ S∗
1 .

(40)

Let

L1 = max
σ

{Lσ|σ ∈ S2

⋃

S∗
1},

L2 = max
σ

{Lσ|σ ∈ S1 \ S∗
1},

with σ = 1, 2, · · · , N . Clearly, L1 ∈ [0, 1) and L2 ∈ [1,+∞).

Theorem 6.1: Design the switching signal such that

K−(0, T )

K+(0, T )
≥

lnL2 − lnL0

lnL0 − lnL1
, (41)

where L0 ∈ (L1, 1), K−(0, T ) is the total activation time of the passive and feedback passive modes, and

K+(0, T ) is the total activation time of the non-feedback passive modes during time interval [0, T ), ∀T ∈

{0}
⋃

Z+. The zero dynamics (12) are passive under the switching signal (41).

Proof: Let 0 = k0 < k1 < k2 · · · denote the switching points and σ(ki−1) = pi. Assume ki is the

ith switch, the state of the zero dynamics evolve as follows

x(ki) = (f∗
pi
◦ f∗

pi
. . . f∗

pi
◦ f∗

pi
)

︸ ︷︷ ︸

ki−ki−1

x(ki−1).

At time T ∈ [ki, ki+1), we obtain

x(T ) = (f∗
pi+1

◦ f∗
pi+1

. . . f∗
pi+1

◦ f∗
pi+1

︸ ︷︷ ︸

T−ki

)x(ki)

= (f∗
pi+1

◦ f∗
pi+1

. . . f∗
pi+1

◦ f∗
pi+1

︸ ︷︷ ︸

T−ki

f∗
pi
◦ f∗

pi
. . . f∗

pi
◦ f∗

pi

︸ ︷︷ ︸

ki−ki−1

)x(ki−1)

= · · · = (f∗
pi+1

◦ f∗
pi+1

. . . f∗
pi+1

◦ f∗
pi+1

︸ ︷︷ ︸

T−ki

f∗
pi
◦ f∗

pi
. . . f∗

pi
◦ f∗

pi

︸ ︷︷ ︸

ki−ki−1

· · · f∗
p1

◦ f∗
p1
· · · f∗

p1
◦ f∗

p1
︸ ︷︷ ︸

k1−k0

)x(0).

Since we assume that f∗
σ(0) = 0, based on (40), we have

|x(T )| ≤ L
K−(0,T )
1 L

K+(0,T )
2 |x(0)|.
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Passivity and feedback passivation of

Markovian jump systems
Yingbo Zhao

I. INTRODUCTION

Throughout this paper, we denote random variables using boldface letters, e.g. X. We define ||x(k)||2 ,
x

T
(k)x(k) and ||x||2 ,

1P
k=0

x

T
(k)x(k).

II. PROBLEM FORMULATION

The discrete-time Markovian jump nonlinear system model that we consider in this paper is given by

x(k + 1) = f�(k)(x(k), u(k)),

y(k) = h�(k)(x(k), u(k)), (1)

where, for k 2 Z+, x(k) 2 Rn is the system state, u(k) 2 Rm is the control input and y(k) 2 Rm is

the controlled output. The random process �k is a time homogeneous Markov process taking values in a

finite set M ={1, 2, . . . ,m}, with transition probability from mode i at time k to mode j at time k + 1,

i, j 2 M:

pij = P (�(k + 1) = j|�(k) = i)

with pij � 0 and
mP
j=1

pij = 1. The Markov process �k is assumed to be stationary, i.e., for any i 2 M,
mP
j=1

pjpji = pi.

For system (1), we assume that the origin (x⇤, u⇤) = (0, 0) is an isolated equilibrium for all modes

1, 2, . . . ,m. The function hi(·), i 2 M is locally Lipschitz near the equilibrium, satisfying

H i(||x(k)||+||u(k)||)||hi(x(k), u(k))||  ¯Hi(||x(k)||+||u(k)||), (2)

where ¯Hi � H i � 0 are scalar constants.

Definition 1: Consider the discrete-time Markovian jump nonlinear system (1) and an open set D in

the state space containing the origin x = 0. Let u = 0, the equilibrium of system (1) is locally

April 12, 2013 DRAFT

Passivity of Markovian Jump Nonlinear Systems 

•  For the system 

3

It is worth to mention that the eigenvalues of ˆA�(k) are the zeros of the original system (7), which further

explains the connection between the stability of the zero dynamics and the minimum phase property of

the original system.

Definition 4: System (1) has L
2

gain � 2 R+ if 8 u(k) 2 U,

E ||y||2  �2||u||2 + �,

where � 2 R is a finite constant.

Definition 5: (passivity) The discrete-time Markovian jump nonlinear system (1) is said to be locally

passive if there exists a set of positive definite functions V (x(k), i) : X ⇥ M ! R+ corresponding to

every mode i 2 M, called the storage functions, satisfying V (0, i) = 0 and

↵i(||x(k)||)  V (x(k), i)  ↵̄i(||x(k)||)

where ↵i(·) and ↵̄i(·) are class K functions, such that for all k 2 Z+, u(k) 2 U, x(k) 2 X, where

X ⇥ U ⇢ Rn ⇥ Rm is a neighborhood of the equilibrium point (0, 0) and �(k) 2 M, the following

inequality satisfies

E[V (x(k + 1),�(k + 1))|x(k),�(k)]� V (x(k),�(k))  yT (k)u(k). (9)

If there further exists a set of positive definite functions S(x(k), i) : X⇥M ! R+ such that

E[V (x(k + 1),�(k + 1))|x(k),�(k)]� V (x(k),�(k))  yT (k)u(k)� S(x(k),�(k)), (10)

system (1) is said to be locally state strictly passive.

Definition 6: (passivity indices) System (1) is said to be input feedforward passive with index ⌫

(denoted as IFP(⌫)) and output feedback passive with index ⇢ (denoted as OFP(⇢)) if there exists a set

of storage functions V (x(k),�(k)) : Rn ⇥ M ! R+ such that 8k 2 Z+, u(k) 2 U, x(k) 2 X, and

�(k) 2 M,

E[V (x(k + 1),�(k + 1))|x(k),�(k)]� V (x(k),�(k))

 (1 + ⇢⌫)yT (k)u(k)� ⇢yT (k)y(k)� ⌫uT (k)u(k). (11)

Definition 7: System (1) is said to be input feedforward passive with mode dependent indices ⌫i

(denoted as IFP(⌫i)) and output feedback passive with mode dependent indices ⇢i (denoted as OFP(⇢i))

if there exists a set of storage functions V (x(k),�(k)) : Rn ⇥M ! R+ such that 8k 2 Z+, u(k) 2 U,

April 12, 2013 DRAFT

define passivity as existence of suitable functions such that 
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if there exists a set of storage functions V (x(k), i) : Rn ⇥M ! R+ such that for all k 2 Z+, �(k) 2 M

and all (x(k), u(k)) in a neighborhood of the equilibrium point,

E[V (x(k + 1),�(k + 1))|x(k),�(k)]� V (x(k),�(k))

 (1 + ⇢�(k)⌫�(k))y
T
(k)u(k)� ⇢�(k)y

T
(k)y(k)� ⌫�(k)u

T
(k)u(k). (8)

III. PASSIVITY AND STABILITY

Theorem 1: If the discrete-time Markovian jump nonlinear system (1) is locally passive, then it is

locally Lyapunov stable in probability.

Theorem 2: The parallel and feedback interconnections of two locally passive Markovian jump

nonlinear systems (as shown in Fig. 1), with the stochastic processes (x

1

(0),�
1

) and (x

2

(0),�
2

) being

mutually independent, remain locally passive.

Proof. Since the two subsystems are locally passive, there exist positive definite functions Vi(xi(k), j) :

Rn ⇥M ! R+, i 2 {1, 2}, j 2 M such that

E[Vi(xi(k + 1),�i(k + 1))|xi(k),�i(k)]� Vi(xi(k),�i(k))  yTi (k)ui(k).

Define x = [x

T
1

x

T
2

]

T , � = (�
1

,�
2

) and

V (x(k),�(k)) = V
1

(x

1

(k),�
1

(k)) + V
2

(x

2

(k),�
2

(k)).
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•  Passivity indices can be defined similarly 



Developments with this definition 

•  Consistent with usual definitions for non-stochastic systems 
•  Can develop usual stability and interconnection results  
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For the parallel interconnection where u = u
1

= u
2

, y = y
1

+ y
2

,

E[V (x(i+ 1),�(i+ 1))|x(0),�(0)]� V (x(k),�(k))

= E[V
1

(x

1

(i+ 1),�
1

(i+ 1))|x
1

(0),�
1

(0)]� V
1

(x
1

(k),�
1

(k))

+ E[V
2

(x

2

(i+ 1),�
2

(i+ 1))|x
2

(0),�
2

(0)]� V
2

(x
2

(k),�
2

(k))

 yT
1

(k)u
1

(k) + yT
2

(k)u
2

(k) = yT (k)u(k),

where the assumption that (x
1

(0),�
1

) and (x

2

(0),�
2

) being mutually independent are used.

For the feedback interconnection where u
1

= r
1

� y
2

, u
2

= r
2

+ y
1

,

E[V (x(i+ 1),�(i+ 1))|x(0),�(0)]� V (x(k),�(k))  yT
1

(k)u
1

(k) + yT
2

(k)u
2

(k) = yT (k)r(k).

Therefore, both the parallel and feedback interconnections remain passive. ⇤
Theorem 3: If system (1) is locally state strictly passive with ↵i||x(k)||2  V (x(k), i)  ↵̄i||x(k)||2

and S(x(k), i) � ci||x(k)||2 for all x(k) 2 D and some ↵i > ↵̄i > 0, ci > 0, then it is locally

stochastically stable.

Theorem 4: Let system (1) be locally passive and zero-state detectable. Then, the output feedback

control law u = �'(y) with ' : Rm! Rm being any first/third sector function (i.e., yT'(y) > 0 8y 6= 0

and '(0) = 0), renders the equilibrium locally asymptotically stable in probability.

Proof. With the feedback law u(k) = �'(y(k)) one can deduce from the passive inequality (6) that

E[V (x(k + 1),�(k + 1))|x(k),�(k)]� V (x(k),�(k))  �yT (k)'(y(k)).

Take expectation on both sides with respect to x(k),�(k)

E[V (x(k + 1),�(k + 1))]� E[V (x(k),�(k))]  �E[yT
(k)'(y(k))].

Since ' is a first/third sector function, it is obvious that E[V (x(k),�(k))] is non-increasing. Since

E[V (x(0),�(0))]� E[V (x(N),�(N))] �
N�1X

k=0

E[yT
(k)'(y(k))] � 0,

we have
P1

k=0

E[yT (k)'(y(k))] < 1. Thus, it must hold that lim

k!1
E[yT

(k)'(y(k))] = 0, which further

implies that ||y(k)|| ! 0 in probability as k ! 1.

Then by the zero-state detectability of system (1), we have ||x(k)|| ! 0 in probability as k ! 1, i.e.,

the equilibrium is asymptotically stable in probability. ⇤
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Theorem 5: Suppose that the discrete-time Markovian jump nonlinear system (1) is IFP(⌫i) and

OFP(⇢i). If the random process � is independent identically distributed (i.i.d.) and there exist m scalars

a
1

, a
2

, . . . , am > 0 such that

E[�u(a�(k),�(k))] > 0, E[�y(a�(k),�(k))H2

(a�(k),�(k))] < 0, (9)

where

�u(a�(k),�(k)) = �⌫�(k) +
1

2a�(k)
|1 + ⇢�(k)⌫�(k)|,

�y(a�(k),�(k)) = �⇢�(k) +
a�(k)

2

|1 + ⇢�(k)⌫�(k)|,

H2

(a�(k),�(k)) =

8
><

>:

¯H2

�(k), if �y(a�(k),�(k)) � 0,

H2

�(k), if �y(a�(k),�(k)) < 0;

then it is input-output L
2

stable with guaranteed L
2

gain

�(a) =
�
�

E[�u(a�(k),�(k))]E ¯H2

�(k)

E[�y(a�(k),�(k))H2

(a�(k),�(k))]

� 1
2 .

For the special case where ⌫i = ⌫ and ⇢i = ⇢ for all i 2 M, �u(a) =

|1+⇢⌫|�2a⌫
2a and �y(a) =

a|1+⇢⌫|�2⇢
2

. It is easy to show that

1) For ⇢ < 0, there does not exist an a > 0 such that �y(a) < 0.

2) For ⇢ > 0, the condition that �y(a) < 0 and �u(a) > 0 can be guaranteed by selecting a suitable

a > 0.

Furthermore, it can be checked that

�(a) =
�

2a⌫ � |1 + ⇢⌫|
a2|1 + ⇢⌫|� 2a⇢

� 1
2 .

achieves its minimum �(a⇤) = 1/|⇢| at a⇤ = ⇢ if |⇢⌫| < 1; and �(a⇤) = |⌫| at a⇤ = 1/⌫ if |⇢⌫| > 1.

The above result is formally stated in the following corollary.

Corollary 1: If system (1) is IFP(⌫) and OFP(⇢) and ⇢ > 0, then it is input-output L
2

stable with L
2

gain �  max(1/|⇢|, |⌫|).

Theorem 6: A discrete-time Markovian jump nonlinear system with i.i.d. Markov process � and pas-

sivity indices (⌫i, ⇢i) (|⇢i⌫i| 6= 1) is input-output L
2

stable if

E[⇢�(k)H2

(a�(k),�(k))] > 0, (10)

where

H2

(a�(k),�(k)) =

8
><

>:

¯H2

�(k), if ⇢�(k)  0,

H2

�(k), if ⇢�(k) > 0.
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if there exists a set of storage functions V (x(k), i) : Rn ⇥M ! R+ such that for all k 2 Z+, �(k) 2 M
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III. PASSIVITY AND STABILITY

Theorem 1: If the discrete-time Markovian jump nonlinear system (1) is locally passive, then it is

locally Lyapunov stable in probability.

Theorem 2: The parallel and feedback interconnections of two locally passive Markovian jump

nonlinear systems (as shown in Fig. 1), with the stochastic processes (x
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1

) and (x
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) being

mutually independent, remain locally passive.
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Feedback Passivation 

•  Passifying using feedback control requires minimum phase for linear 
systems 

•  For MJLS, allow control to be mode specific 

•  Main result: feedback passivation requires the system to be strictly 
minimum phase (i.e. the zero dynamics should be mean squared stable; not 

merely in probability) 

  

 

5

then it is input-output L
2

stable with L
2

gain smaller than or equal to

�(a) =
�
�

E[�u(a�(k),�(k))]E ¯H2

�(k)

E[�y(a�(k),�(k))H2

(a�(k),�(k))]

� 1
2 . (14)

Remark 1: For the discrete-time Markovian jump nonlinear system (1) with mode independent passivity

indices (Theorem 5), it can be verified that the condition �u(a) > 0, �y(a) < 0 is equivalent to ⇢ > 0,

which makes Theorem 5 a special case of Theorem 6.

B. Feedback passivation

Now, let us consider linear cases where the system dynamics are given by

x(k + 1) = A�(k)x(k) +B�(k)u(k),

y(k) = C�(k)x(k) +D�(k)u(k), (15)

and pose the question of whether there exists a state feedback control

u(k) = E�(k)x(k) + F�(k)v(k), (16)

that transform the system (15) into a stochastic passive system. It is assumed that the controller is regular,

i.e., F�(k) is nonsingular.

Lemma 1: The zero dynamics given in (8) of system (15) is feedback invariant under the control law

(16).

Proof: The transformed system under the control law (16) is given by

x(k + 1) = (A�(k) +B�(k)E�(k))x(k) +B�(k)F�(k)v(k),

y(k) = (C�(k) +D�(k)E�(k))x(k) +D�(k)F�(k)v(k), (17)

whose zero dynamics is

x(k + 1) = (A�(k) +B�(k)E�(k) �B�(k)F�(k)(D�(k)F�(k))
�1

(C�(k) +D�(k)E�(k)))x(k)

= (A�(k) �B�(k)D
�1

�(k)C�(k))x(k),

which is independent of the controller. Thus, the zero dynamics is feedback invariant.

The following Proposition is a special case of [5, Theorem III.1.], where general nonlinear systems

are considered.
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Conditions involving Stochastic Conic Systems 

•  Can also generalize to conic systems 

17

H(U)

U

c-­r

c+r

Fig. 1. A conic sector in the input-output product space.

Definition 10: An operator H(!, u) with ! representing a zero-mean stochastic process with mutually

independent random variables !(k) and E ||!||2 < 1, is stochastically interior conic with respect to

f(!) if there exist real constants r � 0 and c such that for 8u 2 U, the inequality

E ||H(!, u)� cu||2  r2||u||2 (33)

is satisfied. Similarly, H(!, u) is stochastically exterior conic if E ||H(!, u)� cu||2 � r2||u||2.

If we view H(!, u) as the transfer function, where u is viewed the input and ! is given, from the

input u 2 U to the output y = H(!, u) 2 Y, then H(!, u) being interior conic implies that the points

(u, y) in the product space U⇥ Y are constrained in the conic region defined by (32), as shown by the

shaded sector in Fig. 1.

Meanwhile, if we interpret H(!, u) as the input-output relation in a stochastic system, where u is

viewed the input and ! is a stochastic disturbance process, then H(!, u) being interior conic means that

the points (u, y) in the product space U⇥ Y are found inside the conic region with high probability. In

particular, according to the Chebyshev’s inequality,

Pr(||H(!, u)� cu|| � nr||u||))  E ||H(!, u)� cu||2

n2r2||u||2  1

n2

.
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•  Probabilistic interpretation 

 

•  Consistent with the passivity indices definition proposed earlier 
  

 



Controller Switching for Performance 

•  Finding a controller that is passifying while optimizing a performance 
criterion is known to be hard 

•  We bypass this problem by switching between two controllers: a passifying 
controller and an optimizing controller 

•  %e frequency of usage of the two controllers is the design parameter 

Pe
rf

or
m

an
ce

 

Passivity margin Frequency 



 

 

•  LQG optimal controller: 

•  A passifying controller: 

Illustration 



•  Stochastic passivity requires small p (p<0.1) 

•  'Good' performance requires large p: 

•  Trade o#? 

Illustration 



Next Steps 

•  Passivity of so!ware 
•  Performance guarantees 
•  Robustness 

•  Implementations 

vgupta2@nd.edu http://ee.nd.edu/faculty/vgupta/ 

Communication Channels


•  The leader channel output is communicated to the i-th follower, i=2,3,…, over a 
communication channel of finite Shannon capacity Ci
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Channel – Capacity Ci


•  If  the controllers are LTI:




•  The right hand side reduces thanks to the disturbance preview

•  There is a saturation effect: The reduction is no greater than the loop gain
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