Space - Time Vehicle Tracking at the Edge of the Network

Zhuangdi Xu, Umakishore Ramachandran

Embedded Pervasive Lab, Georgia Tech

Background

- → Cameras help to improve public/private safety due to its easy accessibility and low cost.
 - 2000+ cameras in Georgia Tech Campus.
- \rightarrow Reactively searching the camera streams after the occurrence of an event (e.g., a robbery) is unscalable.
- Camera streams are recorded 24 x 7.

Space-Time Vehicle Tracking

- \rightarrow Track all vehicles over time and store their trajectories.
 - Answer queries from the stored trajectories.
- \rightarrow Proactive: video stream processing at ingestion time.
 - Circumvent time-intensive post-mortem video analytics
- → Even low accurate result (i.e., more false positives) can help
 - Reduces the search space for more accurate analytics.

System Architecture

- → Geographically distributed camera network
- → Associated computational resources
- Well-connected network \rightarrow

Edge over Cloud

- → Latency
 - Local nodes: $\sim 2ms$
 - Azure US East 2: \sim 50ms
- → Bandwidth
 - Typical IP camera bandwidth: 2-24 Mbps[1]
 - Campus camera (1280 x 960) requires ~32 Mbps
- \rightarrow Administrative reasons
 - Edge => more controlled network
- \rightarrow Frame rate (for the Georgia Tech surveillance cameras)
 - ◆ 13-14 FPS on a local edge node
 - \bullet ~3 FPS on a cloud virtual machine

[1]: https://reolink.com/ip-camera-bandwidth-calculation/

Implementation

- \rightarrow Real camera streams from campus street cameras
- \rightarrow Cloud-version
 - Camera: Azure D4s v3(4 cores, 16G)
- \rightarrow Edge-version
 - Camera: 2 Raspberry Pi 3 B+s (1.4GHz 64-bit quad-core, 1G) and Coral EdgeTPU (USB accelerator)
- → Demo:https://www.cc.gatech.edu/~zxu330/projects/STTR/ind ex.html

2019 NSF Cyber-Physical Systems Principal Investigators'

