
Trajectory of a vehicle is a path / collection of paths in the
probabilistic graph.

➔ Real camera streams from campus street cameras
➔ Cloud-version
◆ Camera: Azure D4s v3(4 cores, 16G)

➔ Edge-version
◆ Camera: 2 Raspberry Pi 3 B+s (1.4GHz 64-bit quad-core,

1G) and Coral EdgeTPU (USB accelerator)
➔ Demo:https://www.cc.gatech.edu/~zxu330/projects/STTR/ind

ex.html

1). Detection 2). Tracking

3). Event generation

➔ Geographically distributed camera network
➔ Associated computational resources
➔ Well-connected network

➔ Latency
◆ Local nodes: ~2ms
◆ Azure US East 2: ~50ms

➔ Bandwidth
◆ Typical IP camera bandwidth: 2-24 Mbps[1]
◆ Campus camera (1280 x 960) requires ~32 Mbps

➔ Administrative reasons
◆ Edge => more controlled network

➔ Frame rate (for the Georgia Tech surveillance cameras)
◆ 13-14 FPS on a local edge node
◆ ~3 FPS on a cloud virtual machine

➔ Based on publish-subscribe.
◆ topic = name of the camera

➔ Received events compose of candidate pool.
◆ vehicles might pass through the camera in the future.

➔ Cameras help to improve public/private safety due to its easy
accessibility and low cost.

◆ 2000+ cameras in Georgia Tech Campus.
➔ Reactively searching the camera streams after the occurrence of

an event (e.g., a robbery) is unscalable.
◆ Camera streams are recorded 24 x 7.

➔ Track all vehicles over time and store their trajectories.
◆ Answer queries from the stored trajectories.

➔ Proactive: video stream processing at ingestion time.
◆ Circumvent time-intensive post-mortem video analytics

➔ Even low accurate result (i.e., more false positives) can help
◆ Reduces the search space for more accurate analytics.

[1]: https://reolink.com/ip-camera-bandwidth-calculation/

Vehicle detecting

Post-processing includes
communication, storage,
tracking, feature
extracting, ...

Other Rpis

Coral Edge TPU

{
camera: ferst_hemphill,

 timestamp: 18:19-07/10/2019,
 features: {

moving_direction: 90 (east),
histogram: np.array([...])

 }
}

A B C

D

1 2

21: Camera A forwards the blue
vehicle’s detection event to camera B
such that camera B is informed that
the blue vehicle would pass through
soon.

2: Camera B forwards the orange vehicle’s
detection event to both camera C and D such
that they are informed the orange vehicle might
pass through next.

{
camera: ferst_hemphill,

 timestamp: 18:19-07/10/2019,
 features: {

moving_direction: 90 (east),
histogram: np.array([...])

 },
vertexId: V1

}

V1

Upon detection event, a new
vertex is created in graph
database

V2

Later the same vehicle is
detected by the downstream
camera

0.8

Once a matching is found, an edge with
weight as the confidence of
re-identification is added.

Add vertex identifier back to the
event for message publishing

