
Trajectory of a vehicle is a path / collection of paths in the 
probabilistic graph.  

➔ Real camera streams from campus street cameras
➔ Cloud-version
◆ Camera: Azure D4s v3(4 cores, 16G) 

➔ Edge-version
◆ Camera: 2 Raspberry Pi 3 B+s (1.4GHz 64-bit quad-core, 

1G) and Coral EdgeTPU (USB accelerator)
➔ Demo:https://www.cc.gatech.edu/~zxu330/projects/STTR/ind

ex.html

1). Detection                    2). Tracking

3). Event generation

➔ Geographically distributed camera network
➔ Associated computational resources
➔ Well-connected network

➔ Latency
◆ Local nodes: ~2ms
◆ Azure US East 2: ~50ms

➔ Bandwidth
◆ Typical IP camera bandwidth: 2-24 Mbps[1]
◆ Campus camera (1280 x 960) requires ~32 Mbps

➔ Administrative reasons
◆ Edge => more controlled network

➔ Frame rate (for the Georgia Tech surveillance cameras) 
◆ 13-14 FPS on a local edge node
◆ ~3 FPS on a cloud virtual machine

➔ Based on publish-subscribe.
◆ topic = name of the camera

➔ Received events compose of candidate pool.
◆ vehicles might pass through the camera in the future.

➔ Cameras help to improve public/private safety due to its easy 
accessibility and low cost.

◆ 2000+ cameras in Georgia Tech Campus.
➔ Reactively searching the camera streams after the occurrence of 

an event (e.g., a robbery) is unscalable.
◆ Camera streams are recorded 24 x 7.

➔ Track all vehicles over time and store their trajectories. 
◆ Answer queries from the stored trajectories.

➔ Proactive: video stream processing at ingestion time. 
◆ Circumvent time-intensive post-mortem video analytics

➔ Even low accurate result (i.e., more false positives) can help
◆ Reduces the search space for more accurate analytics.

[1]: https://reolink.com/ip-camera-bandwidth-calculation/

Vehicle detecting

Post-processing includes 
communication, storage, 
tracking, feature 
extracting, ...  

Other Rpis

Coral Edge TPU

{
camera: ferst_hemphill,

  timestamp: 18:19-07/10/2019,
  features: {

moving_direction: 90 (east),
histogram: np.array([...])  

  }
}
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21: Camera A forwards the blue 
vehicle’s detection event to camera B 
such that camera B is informed that 
the blue vehicle would pass through 
soon.

2: Camera B forwards the orange vehicle’s 
detection event to both camera C and D such 
that they are informed the orange vehicle might 
pass through next.

{
camera: ferst_hemphill,

  timestamp: 18:19-07/10/2019,
  features: {

moving_direction: 90 (east),
histogram: np.array([...])  

  },
vertexId: V1

}

V1

Upon detection event, a new 
vertex is created in graph 
database

V2

Later the same vehicle is 
detected by the downstream 
camera

0.8

Once a matching is found, an edge with 
weight as the confidence of 
re-identification is added. 

Add vertex identifier back to the 
event for message publishing


