Zhuangdi Xu, Umakishore Ramachandran Embedded Pervasive Lab, Georgia Tech

Background

\rightarrow Cameras help to improve public/private safety due to its easy accessibility and low cost.

- 2000+ cameras in Georgia Tech Campus.
\rightarrow Reactively searching the camera streams after the occurrence of an event (e.g., a robbery) is unscalable.
- Camera streams are recorded 24×7.

Space-Time Vehicle Tracking

\rightarrow Track all vehicles over time and store their trajectories.

- Answer queries from the stored trajectories.
\rightarrow Proactive: video stream processing at ingestion time.
Circumvent time-intensive post-mortem video analytics
Even low accurate result (i.e., more false positives) can help
- Reduces the search space for more accurate analytics.

System Architecture

\rightarrow Geographically distributed camera network
\rightarrow Associated computational resources
\rightarrow Well-connected network

Edge over Cloud

\rightarrow Latency

- Local nodes: ~2ms
- Azure US East 2: ~50ms
\rightarrow Bandwidth
- Typical IP camera bandwidth: 2-24 Mbps[1]
- Campus camera (1280×960) requires $\sim 32 \mathrm{Mbps}$
\rightarrow Administrative reasons
- Edge $=>$ more controlled network
\rightarrow Frame rate (for the Georgia Tech surveillance cameras)
- 13-14 FPS on a local edge node
- $\quad 3$ FPS on a cloud virtual machine
[1]: https://reolink.com/ip-camera-bandwidth-calculation/

Computer Vision

Messaging

Trajectory Store

Trajectory of a vehicle is a path / collection of paths in the probabilistic graph.

Implementation

\rightarrow Real camera streams from campus street cameras
\rightarrow Cloud-version

- Camera: Azure D4s v3(4 cores, 16G)

Edge-version

- Camera: 2 Raspberry Pi 3 B+s (1.4GHz 64-bit quad-core, 1G) and Coral EdgeTPU (USB accelerator)
\rightarrow Demo:https://www.cc.gatech.edu/~zxu330/projects/STTR/ind ex.html

