Specification-based
Software Engineering

Formal Methods @ Scale, September 2019

Thomas Ball and Jonathan Protzenko
Microsoft Research

Perspective from 20 years at MSR

 Solid progress in the use of specifications, automated
solvers/analyzers and interactive proof assistants

* The complexity of both specifications and the systems we can reason
about has increased substantially

* More to be done to achieve specification-based software engineering

Specification-based Software Engineering

* Deliver verified and efficient components into existing systems
e CompCert (C compiler)
e EverCrypt (Cryptographic algorithms)
e EverParse (binary parsers)

e What's different?

» Specification is a major and important artifact
* Specification-based languages for proof and performance
* Automation and interaction: predictability, stability, transparency of tools

Formal Specification: When?

* Critical components

* Widely used components

e Standardized interfaces (standardization)

* Multiple competing implementations

* New domains (e.g., smart contracts, network verification)

Specification-based programming languages

If we want verified code at scale, we need languages that are designed to
enable productive verification and produce efficient code:

o F* (https://www.fstar-lang.org/) powers up the F# (mostly) functional
language with a dependent type system deeply integrated with SMT

* lvy (https://github.com/Microsoft/ivy) guides the designer to structure
their systems so that verification tasks are reduced to decidable fragments
of first-order logic

* Lean (https://github.com/leanprover/) is a pure functional language and
proof assistant, with the goal of high automation

Long-term investment required

https://www.fstar-lang.org/
https://github.com/Microsoft/ivy
https://github.com/leanprover/

| BV F
. " M I C rOSOft .¢Micro esear
: JOINT CENTR €
7 Carnegie
lrezia— Mellon
UUUUUUUUUUUUUUUUUUUUUUUUUU University

Everest

Building and Deploying
Verified Security
Components

Fverest in one slide
« Veritying the TLS 1.3 stack

- high liability; long flawed history; formal-methods friendly
Using F* and companion DSLs

500,000 lines of veritied source; 200,000 lines of compiled C & ASM

Work in progress; releasing independent components as we go
« EverCrypt = HACL* + ValeCrypt
- EverParse

Fverest code used in: Firefox, Windows, Azure, Tezos, Wireguard, etc.

4 years into the project; now 25+ participants, 6 locations, 5 timezones

Overview of Everest: what do we prove?

RS /
“‘\3\ ht@g,_.
(\(\63 Iq,
© miTLS 1.3
record Iayerﬁ key derivation H Hg?ﬁ:giengarsing &
id EverCrypt EverParse non-malleability
side-
channel 11 11
resistance B
(Pol 13H0;A\C(tfr%e25519 j‘> Valecrypt
yChach,aZO, etc) (Poly1305, Curve25519)

+ memory safety, functional
correctness

A journey in verification at scale
« HACL* (2017/): standalone, separate algorithms

- separate verification scopes
- monolithic verification invocations

e no notion of abstraction
« 23kloc

» EverCrypt (2019): a provider that unifies all the crypto

« all in one scope
- modular, parallel verification
« abstraction boundaries

 spec equivalence; agility, multiplexing, CPU auto-detection
« 115kloc (5x increase)

What made it possible?

A journey in time

WinQUIC MirageOS Azure CCF + ePBFT
Deployments (2018) (2019) (2019)
Tezos
- WireGuard VPN blockchain
Firefox (2017) (2018) (2018)
Signal* librar
TLS Record Laydr HACL* librar E\Iger};I:; e (S84 2019) E)\:(?:/(I:JZII? t
(S&P 2017) (CC5 2017) (Usenix 2019) (2019)
Applications
Tools
F* Vale F* F* Vale
(POPL 2016) (Usenix (POPL 2018) (ESOP 2019) (POPL 2019)
2017)
Low* F*

(ICFP 2017) (POPL 2017)

Constant improvements in core research

» The core F* technology o swemy

« Monotonicity (D. Ahman)

« Revamped core Low* libraries (T. Ramananandro, A. Rastogi)
« Tactics (G. Martinez)

 Support for Vale v2 meta-programmed WPs (C. Hawblitzel)

» Driven by applications

 Close feedback loop between applications and tool authors
« Only possible with dedicated, full-time language / PL experts

» Challenges
* Priorities
- Communication with time difference / separate institutions & agendas
- Temptation of the next iteration

Constant improvements in tools

» F*: from research project to actual language

 interactive Emacs mode (C. Pit-Claudel)
- parallel builds with binary artifacts
- style guides and formatters

 Everest support

« 24/7 continuous integration (all 500k lines of code)
« build reliability, reproducibility

» Challenges

« Temptation of corporate-only solutions
 Hard to field positions for build & ClI
« Open-source is non-negotiable

Constant interaction with industry
» Pick your battles

« Early champions were essential to our success (Mozilla)
« Open-source easier to work with

» Be ready to listen

« Integration blockers are not what you may think
 Performance matters: be ready to learn a lot

» Challenges

 Endless integration / engineering work
« Coordination, internally & externally

The art of writing verified software?
» Specifications are deep; how to remain modular?

A single architect that designs and sketches (does not scale)
- Abstract code & specifications (verbose, but better)
« |s verified software inherently monolithic?

« SMT does not scale

« The beginner’s lament: small examples = ok, large projects = sadness
- A discipline of tight abstraction boundaries and abstract reasoning

« A carefully-learned set of good practices to scale: a healthy dose of skepticism
towards SMT along with tactics

The art of writing verified software?
» How to coordinate 25+ people?

 The price of diverging libraries, abstractions and specifications is enormous
« Social: a distributed, loosely-tied group
» Technical: fear of changes, non-modularity, SMT-fragility

 "Write once, fixup forever”

 The elusive art of a robust proof

« Requires deep expertise and understanding

« Alleviated by tools, Cl, etc. (could be better)

» Always go back to the drawing board for core improvements

Looking forward
» Everest takes place in the long time scale!

 The culmination of a decade of research on F* and TLS

« Building expertise takes time; PhD students come and go

» Need stability; the ability to do fundamental work on languages and theory
« A testament to basic research vs. squeezing immediate results

» Things we continue to grapple with

- Tool improvements are the most visible and effective; yet hard to retain or even
have anyone dedicated

« Scaling up our own workforce: need for verification engineers; need to reward
training materials and documentation

Points for Further Discussion

o Automation

« More work to be done (scaling safety checking still difficult)
» Predictability, Stability, Transparency

« Composition
- how to integrate independently verified components and verify that the
Integration is correct?

» Use of domain-specific languages

« Make more programmers productive through restrictions on
expressiveness

« Common specifications for critical components

