
Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object 
Recognition and Automated Deep Learning-Based Design Classification 

(Award # 1932146) 
Saman Zonouz, Mehdi Javanmard (Rutgers University), Raheem  Beyah (GaTech)

Scientific Impact: 

• our automated and robust search 
algorithms for 3D designs will 
leverage and complement 
computer vision-based perception 
in other CPS domains 
(e.g., robotics)

• Our efficient detection for 
malicious stealthy designs 
complements post-print quality 
control procedures 

Solution: 

• Online classification and 
categorization of 3D printer 
design files using deep neural 
networks (DSN’21) 

• Automated processing of 3D 
design files and their translation 
to relevant data structures (e.g., 
Octrees) for effective malicious 
defect detection 

Challenge: 

• Efficient search capabilities for 3D 
printer design files for design 
distribution and reuse purposes

• Detection of 3D printer design files 
by third-parties with malicious 
corruptions before printing

• Search support for partial sub-
component search with key words as 
well as 2D sketches

Broader Impact: 

• This solution would enable end-
users without technical expertise to 
find their designs of interest online 
in a timely manner

• The malicious designs can be 
detected effectively before printing

• Edu: we worked with 
undergraduates on research; and 
regularly with a female high school 
student (admitted to Cornell)

Fig. 2: Threat model and application of the TIV framework.

Safety functional conditions 
based on category detected

TIV

Object Classifier Void Detection
Safety Conditions Verifier

STL design 
scheduled to print

CNN classifier used to 
determine the design 

scheduled to print

Flood fill algorithm used 
to detect stealthy voids 

present in the design

Numerical method 
(FEA) used for safety 

conditions verification 

Designs that pass safety operational 
conditions are printed

Designs that fail safety operational 
conditions are alerted to the am operator

Design category 
classified

Fig. 3: Structure of the TIV framework.

module detects any suspicious features, they are fed to safety
verification module to determine if the printed objects satisfy
the safety conditions.Voids are a special type of suspicious
features in AM systems. Most attacks on STL files present in
the literature are malicious insertion of voids [5], [36]. Voids
can take various shapes, such as cubic, rectangular, pyramid,
cone, etc. Void detection module detects the voids irrespective
of there size and shape.

c) Safety Conditions Verification Module: If the void
detection module detects any potentially malicious voids, they
have to be verified to determine if the voids are legitimately
a part of the design or due to an attack against the structural
integrity of the object. The strength to weight ratio is a popular
matrix to consider while designing. The best design will have
higher strength with less material used. Hence the designers
tend to remove material in the places that do not affect the
strength of the printed object. Legitimate voids created in
the design process are inserted by the designer to reduce the
material and weight of the object without compromising the
mechanical strength of the object. Voids of this nature are
considered benign. On the other hand, malicious voids tend to
reduce the strength of the printed object significantly. Hence
the benign design features can be easily differentiated from the
malicious features. We use a numerical methods based finite
element analysis to calculate the strength of the printed object.
The safety functional conditions are feed from a database
to the safety condition verifier. The verification is performed
based on this safety functional conditions. section VII shows
the designs with malicious features and without malicious

features to show the effectiveness of our verification module.

IV. OBJECT CLASSIFICATION

The object classification module is used to detect any
changes to the intended object to an alternative shape. The
object classification module uses CNN to detect the object to
be printed and verifies if the shape of the object is an intended
object shape. Since the printing operator knows the object to
be printed, they can give the command to the object classifier
to verify if the object is the intended object to be printed.
This section describes the methodology used for classification
of the 3D objects using CNN.

a) Database: The database was constructed from com-
bination of modelnet database [46] with well annotated labels
and design files downloaded from popular website thingi-
verse [38] with no annotation labels. The database consists
of 298,056 design files from 44 different categories. The
categories range from critical parts from aerospace, medical,
power tools, sports equipment’s. 237,864 files were used for
training and 60,192 were used for testing.

b) Octree: In the field of computer vision, convolutional
neural networks (CNN) are often used to classify 2D images.
However this method cannot be directly used for design files
because of their 3D shape and irregular triangle meshes. Hence
the 3D design files have to be converted into an appropriate
format to use traditional convolutional neural networks.

We convert the 3D design files to octree [26] and use
the octree as the inputs to the CNN. An octree is a tree
data structure most often used to partition a three-dimensional
space by recursively subdividing it into eight octants. Octrees

4

locations in a propeller, the structural integrity of the propeller was compromised - it broke during a flight
causing the drone crash.

Preliminary work. Since voids are the primary known suspicious feature, we performed preliminary
studies on detecting them automatically. Our void detection method leverages ideas from the flood fill
algorithm [8] that is widely used in image processing to change the color in a continuous region of an image
to another color. The conventional flood fill algorithm is mainly used for 2D pixels in images. In this work,
we extended the flood fill algorithm for a different domain and applied it for 3D voxels in design files.

Since an STL file describes the geometry of an object in a vector form (coordinates of triangles), it is
impossible to directly apply the flood fill algorithm. As a result, we have to first convert the STL file into a
3D array of voxels. The process of converting an STL file to a 3D array of voxels is analogous to rasterizing
a vector image to a 2D array of pixels. An STL file can be converted to a 3D array of voxels by the following
steps: i) the STL file is sliced to get a series of perimeter paths that are vector images; ii) these vector images
are then transformed to 2D arrays of pixels using the standard rasterizing technique; iii) these 2D arrays of
pixels are stacked up to form a 3D array with different layers to form voxels.

When detecting voids in an STL file, we rasterize the STL file into a 3D array of voxels. We then
apply the flood fill algorithm to fill the outside region of the model. Now we can search the whole space
for unfilled voxels. Once we found one, we apply the flood fill algorithm on that voxel to fill in the region
that is connected to the voxel. We continue the process until we are sure that all of the voxels have been
examined. The number of times that we found unfilled voxels corresponds to the number of voids in the
object. The information of the unfilled voxels is collected for later analysis to verify if the identified void(s)
is/are malicious.

File Detected voids Actual voids Detection Rate

Aerospace 6 6 100%
Automotive 3 3 100%
Engineering 2 2 100%
Handtools 4 4 100%

Table 1: Malicious feature detection using flood fill on attacked STL
files.

As of now, it is hard to find STL files with
voids in the wild. In order to test the accu-
racy of the aforementioned void detection al-
gorithm, we randomly selected twenty STL
files from four different categories (from Thin-
giverse repository) and implemented void at-
tacks [7] against some of the STL files. By at-
tacking, we inserted spherical and cubic voids
with various sizes into the STL files (Figure 4 shows a sample - the voids are highlighted by red rectangular
boxes). Table 1 shows the results of the aforementioned algorithm to detect voids. The proposed algorithm
detected the number of inserted voids in all of the manually attacked STL files accurately.

Database of 
Signatures of 

Suspicious 
Features

Signature of 
Suspicious Cubic 

Voids

Signature of 
Suspicious 

Spherical Voids

Object to be 
Exmained

Voxels of the Object HOG Features of 
the Object

Score Map for All 
Layers

Score Map for All 
Layers

Fetch

Voxelize Extract
Features

Convolve

Convolve

+

Figure 5: Overview of the signature based suspicious feature detection module.

Proposed work. The afore-
mentioned algorithm can only
detect voids in design files.
This is because the algo-
rithm leverages the topolog-
ical characteristics of voids.
However, voids are only one
type of suspicious features. In
order to expand the capability
of TIV to detect generic types
of malicious features (such as
holes, cracks, and asymmetric
blades), we propose a signa-
ture based suspicious feature
detection module. This mod-
ule aims to detect suspicious
features in a 3D model using the signatures of known suspicious features (Figure 5).

The database contains the signatures of known suspicious features. The signature of a geometric shape

5

Object Classification For each design file, its object category is required to determine the appropriate
set of boundary conditions for the FEA analysis. We will deep learning-based techniques to classify all the
design files into different object categories and specify generalized but category-specific boundaries for each
particular object category. As a preliminary study, we created a database of design files from the combination
of the modelnet database [61] with well annotated labels and the design files downloaded from Thingiverse
repository [54] with no annotation labels. The database consists of 298,056 design files from 44 categories.
237,864 files were used for training the neural network and 60,192 were used for testing (Figure 12). The
design files from modelnet were in object file format, hence for uniformity of the design file format, the STL
files from Thingiverse were converted into the object file format while building the database.

Figure 12: Confusion matrix for classification of the objects into 44 different categories. 1 indicates all
of the objects are classified correctly and 0 indicates none of them are classified correctly. Diagonal 1’s
indicates that most of the objects were classified correctly.

In the field of
computer vision,
convolutional
neural networks
(CNN) are often
used to classify 2D
images. However
this method cannot
be directly used
for design files be-
cause of there 3D
shape and irregular
triangle meshes.
We propose to
convert the 3D de-
sign files into more
appropriate format
to use traditional
convolutional neu-
ral networks. We
propose to convert
the 3D design
files to octree [35]
structure and use
the structure as the inputs to the CNN. An octree is a tree data structure most often used to partition a
three-dimensional space by recursively subdividing it into eight octants. Octrees are popularly used in 3D
graphics and 3D game engines for rendering, modeling and collision detection. We propose to generate
sparse octree occupied by the boundary surface of the 3D shapes.

Since the design files have irregular triangular meshes such as flipped normals, non-manifolds and over-
lapped triangles, we converted them into point cloud that consists of just points. We use the ray shooting
algorithm [4] to sample dense points from the 3D shapes. We then divide this dense point cloud into a unit
3D bounding cube and recursively subdivide the bounding cube of 3D shape until the required octree depth
is reached. We traverse all the non-empty octants occupied by the 3D shape bounding cube in the current
depth and subdivide them into eight child octants for the next depth. We use this octree data structure as
input for the CNN to classify the 3D design into appropriate category. We used the octree data structure as
input for the CNN (O-CNN) [59]. Figure 12 shows confusion matrix; the classifier can accurately predict
most of the category of the objects (92% on average).

We propose to create a more extensive database such that any design file can be classified into its cate-
gory. Generalized but specific to the category boundary conditions can be used for finite element analysis to
determine whether the features are due to the design or due to an attack. To create such a massive classifier,
we propose to scrape the internet for as many as possible STL files. We propose to label them and retrain
our model to include different categories as they are added to the database. Hence, the model can be updated
for any further any categories that might be on the internet.

10

3D Design 
Classification 
Confusion 
Matrix:


