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Abstract— This paper examines a passivity-based I/O ap-
proach for stabilization of large scale networked control systems
(NCSs) with event-driven communication. We use a cellular
model to model the large scale NCSs and assume that each
subsystem is an output feedback passive (OFP) system. We
propose a distributed event-driven communication strategy,
where each subsystem broadcasts its output information to its
neighbors only when the subsystem’s local output novelty error
exceeds a specified threshold. Based on the proposed event-
driven communication strategy, the studied large scale NCSs
is finite-gain L2 stable in the presence of bounded external
disturbances. The triggering condition is related to the topology
of the underlying communication graph. We also provide a
way to analyze the time interval between two consecutive
communication broadcasts(the inter-event time). Simulation
results are shown at the end.

I. INTRODUCTION

Important aspects in the implementation of distributed

algorithms for control of multi-agent systems are commu-

nication transmissions and actuation update schemes. Most

of the work in the literature assumes that the execution of

the distributed controller and the scheduling of the communi-

cation transmission are implemented in a conservative way,

where a tight bound is selected as the maximal allowable

inter-transmission time to guarantee the performance of the

interconnected systems for all possible operating points. This

traditional methodology may lead to inefficient implementa-

tion of distributed control algorithms in terms of processor

usage or available communication bandwidth.

To overcome this drawback, several researchers have sug-

gested the idea of event-based control. In a typical event-

based implementation, the control signals are kept constant

until the violation of a condition on certain signals triggers

the re-computation of the control signals. The possibility of

reducing the number of re-computations, and thus of trans-

missions, while guaranteeing desired levels of performance

makes event-based control very appealing in networked con-

trol systems(NCSs). A comparison of time-driven and event-

driven control for stochastic systems favoring the latter can

be found in [4]; a deterministic event-triggered strategy was

introduced in [6]; an event-triggered real-time scheduling

approach for stabilization of passive and output feedback

passive (OFP) systems has been proposed in [13]. All of

those works apply to sensor-actuator NCSs.

Event-driven communication in large scale deployment

of distributed NCSs is of interest because of the potential
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of reducing communication load for control. In the present

paper, we propose a distributed event-driven communication

strategy for stabilization of large scale networked control

systems with finite-gain L2 stability. We use a cellular

model to model the large scale NCSs, where the locally

interconnected subsystems can be modeled as cells, the

interconnections between subsystems in the same cell can

be modeled as species coupling while the interconnections

between subsystems in different cells can be modeled as

coupling between cells. The purpose of employing a cellular

model is for the study of “scalability” of the event-driven

control strategy: for example, in control of multi-agent

systems with event-driven communication, when additional

groups of agents are added into the system, how does

this affect the communication frequency in the network?

In our event-driven communication strategy, each subsystem

broadcasts its output information to its neighbors only when

the subsystem’s local output novelty error exceeds a specified

threshold. The triggering condition is related to the topology

of the underlying communication graph. We also provide

an analysis of the time interval between two consecutive

communication broadcasts(the inter-event time). Although

in general, the “zeno” inter-event time cannot be avoided

unless a lower bound of the inter-event time is imposed

in the communication network, our analysis shows that the

topology of the underlying communication graph plays an

important role on the performance of the NCSs with event-

driven communication, which to the best of our knowledge,

has not been explicitly discussed in the literature of event-

based distributed control systems. This conclusion is also

verified through simulations. Related work can be found in

[10],[7], however the role of network topology in event-

driven control is not explicitly studied.

The rest of this paper is organized as follows: we introduce

some background in section II; the problem is stated in

section III; our main results are provided in section IV

followed by the examples shown in section V; concluding

remarks are made in section VI.

II. BACKGROUND MATERIAL

We first introduce some background on passive systems

and graph theory which will be used to derive the results

presented in the current paper.

A. Graph Theory

We consider finite weighted directed graphs G := (V, E)
with no self-loops and adjacency matrix A, where V denotes

the set of all vertices, E denotes the set of all edges, and
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A := [aij ] with aij > 0 if there is a directed edge from

vertex i into vertex j, and aij = 0 otherwise. The in-degree

and out-degree of vertex k are given by di(k) =
∑

j ajk and

do(k) =
∑

j akj respectively.

The Laplacian matrix of a directed graph is defined as

L = D − A, where D is the diagonal matrix of vertex out-

degrees.

Fig. 1: graph of Example 1

Example 1: Consider a graph as shown in Fig.1, where we

define

aij =

{
a, if vertex i sends information to vertex j;

0, otherwise.
(1)

a > 0 represents the coupling strength between vertices.

Then we can get

A =





0 a a a

0 0 a 0
0 0 0 0
0 0 0 0



 , D =





3a 0 0 0
0 a 0 0
0 0 0 0
0 0 0 0



 , (2)

and the graph Laplacian is given by

L =





3a −a −a −a

0 a −a 0
0 0 0 0
0 0 0 0



 . (3)

Definition 1(algebraic connectivity)[9]: Let P be the set

{x ∈ R
n|x ⊥ 1n, ‖x‖ = 1}, where 1n := [1, 1, . . . , 1]T ∈

R
n. For a directed graph G with Laplacian matrix L, the

algebraic connectivity is the real number defined as

a(G) = min
x∈P

xT Lx = min
x∈P

xT Lx

xT x
. (4)

For a graph with n vertices, a(G) can be efficiently computed

as

a(G) = λmin

{1

2
Q(L + LT )QT

}
, (5)

where Q ∈ R
(n−1)×n and Q1n = 0.

Definition 2(strongly connected graph)[8]: A directed

graph is strongly connected if for any pair of distinct vertices

νi and νj , there is a directed path from νi to νj .

Definition 3(balanced graph)[8]: A vertex is balanced if

its in-degree is equal to its out-degree. A directed graph is

balanced if every vertex is balanced.

Lemma 1 [8]: For a balanced graph G with nonnegative

weights, a(G) > 0 ⇔ G is strongly connected.

B. Passivity

Consider the following dynamic system which can be used

to describe both linear and nonlinear systems:

H :

{
ẋ = f(x, u)

y = h(x)
(6)

where x ∈ X ⊂ R
n, u ∈ U ⊂ R

m and y ∈ Y ⊂ R
m are

the state, input and output variables, respectively, and X, U

and Y are the state, input and output spaces, respectively.

The representation φ(t, t0, x0, u) is used to denote the state

at time t reached from the initial state x0 at t0.

Definition 4(supply rate)[1]:The supply rate ω(t) =
ω(u(t), y(t)) is a real valued function defined on U ×
Y, such that for any u(t) ∈ U and x0 ∈ X, y(t) =
h(φ(t, t0, x0, u), u), ω(t) satisfies

∫ t1

t0

|ω(τ)|dτ < ∞. (7)

Definition 5(Dissipative System)[1]: System H with supply

rate ω(t) is said to be dissipative if there exists a nonnegative

real function V (x) : X → R
+ (set of nonnegative real

numbers), called the storage function, such that, for all

t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U,

V (x1) − V (x0) ≤
∫ t1

t0

ω(τ)dτ. (8)

Passive systems are special cases of dissipative systems as

defined below.

Definition 6(Passive System)[1]: System H is said to be

passive if there exists a storage function V (x) such that

V (x1) − V (x0) ≤
∫ t1

t0

u(τ)T y(τ)dτ. (9)

If V (x) is C1, then we have

V̇ (x) ≤ u(t)T y(t), ∀t ≥ 0. (10)

Definition 7(Output Feedback Passive System)[2]: System

H is said to be Output Feedback Passive(OFP) if it is

dissipative with respect to the supply rate

ω(u, y) = uT y − ρyT y, (11)

for some ρ ∈ R.

Remark 1: We denote an output feedback passive system

with supply rate ω(u, y) = uT y − ρyT y as OFP(ρ). Note

that if ρ > 0, then H is strictly output passive; if ρ < 0,

then H is not passive and H is said to lack output feedback

passivity. Also note that if a system is OFP(ρ), then it is also

OFP(ρ − ε), ∀ε > 0.

III. PROBLEM STATEMENT

Consider a large scale interconnected NCSs as shown in

Fig.2, where we have M cells and each cell is composed of

N subsystems as species. Let Hkj denote species k in cell j.

We assume that Hkj is an OFP(ρk) system with C1 storage

function satisfying the dissipative inequality given by

V̇kj ≤ uT
kjykj − ρkyT

kjykj , ρk ∈ R, ∀t ≥ 0, (12)
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where ukj , ykj ∈ R
m are the input and output of Hkj , Vkj

is the storage function of Hkj .

Fig. 2: Example of A Large Scale Interconnected NCSs

The control input to Hkj is given by

ukj = wkj +

N∑

i=1

s
j
ki(yij − ykj) +

M∑

h=1

ck
jh(ykh − ykj), (13)

for k = 1, . . . , N and j = 1, . . . , M , where wkj ∈ L2e

is the external disturbance input to Hkj , the scalar s
j
ki is

nonnegative and represents the coupling between species i

and k in cell j, and we have

s
j
ki =

{
sj , if Hij sends its output information to Hkj

0, otherwise;
(14)

the scalar ck
jh is nonnegative and represents the coupling

among the species k in cell j and cell h , and we have

ck
jh =

{
ck, if Hkh sends its output information to Hkj

0, otherwise.

(15)

Let N j
k denote the set of species in cell j that send output

information to Hkj ; let Zj
k denote the set of species in

cell j that receive output information from Hkj ; let Nkj

denote the set of species k in the other cells(excluding cell

j) that send output information to Hkj ; and let Zkj denote

the set of species k in the other cells(excluding cell j) that

receive output information from Hkj . For example, in Fig.

2, one can see that N 1
1 = {H31, H41}, Z1

1 = {H21, H41},

N11 = {H13}, and Z11 = {H12}. Let | · | denote the

cardinality of a set, then in this example we have |N 1
1 | = 2.

Note that the control law (13) is widely used in cooperative

control of multi-agent systems where continuous commu-

nications between agents are assumed. Results concern the

characterization and design of the information exchange

structure for stabilization of dissipative multi-agent systems

with continuous communication are reported in [14].

We are interested in the case when each subsystem only

transmits its current output information to its neighbors when

a triggering condition is satisfied. Assume at t = tnkj , n =
0, 1, 2, . . ., Hkj sends out its output information ykj(t

n
kj) to

its neighbors {Zj
k∪Zkj} and updates its control input based

on ykj(t
n
kj), then we have for t ∈ [tnkj , t

n+1
kj ),

ukj(t) = wkj(t)+
∑

i∈N j

k

sj(ŷij − ŷkj)+
∑

h∈Nkj

ck(ŷkh − ŷkj),

(16)

where ŷij represents the latest output information received

by Hkj from Hij (Hij ∈ N j
k ), and ŷkj = ykj(t

n
kj); ŷkh

represents the latest output information received by Hkj

from Hkh (Hkh ∈ Nkj). Now the problems are: with

event-driven communication and the control law (16), under

what triggering condition we can achieve L2 stability of

the entire system? How does the topology of the underlying

communication graph impact on the overall performance of

the system?

IV. MAIN RESULT

Before we state the main results of this paper, we make

the following assumptions:

A1. The communication delays between each coupled sub-

systems are negligible;

A2. Let a(Gj) denote the algebraic connectivity of the

underlying communication graph in cell j and let a(Ĝk)
denote the algebraic connectivity of the underlying commu-

nication graph among species k in different cells, we assume

a(Gj) + a(Ĝk) > 0, for k = 1, . . . , N , j = 1, . . . , M , and

all the communication graphs are balanced;

A3. Each subsystem Hkj is OFP(ρk) with

1

2
min

k
{ρk} ≥ max

j
{a(Gj)} and

1

2
ρk ≥ a(Ĝk),

for k = 1, . . . , N , j = 1, . . . , M .

Theorem 1. Consider the model of a large scale NCSs as

discussed in Section III, let assumptions A1-A3 be satisfied.

With the control input given in (16), if Hkj broadcasts its

output information to its neighbors at the time implicitly

determined by the triggering condition

‖ekj(t)‖2 =

√
γσ

(
|Zj

k|, |Zkj |
)
‖ykj(t)‖2, ∀t ≥ 0, (17)

with

σ
(
|Zj

k|, |Zkj |
)

=

a(Gj) + a(Ĝk) − ( 1
2α

+ 1
2β

)|Zj
k| − ( 1

2α̂
+ 1

2β̂
)|Zkj |

(α+β)|Zj

k
|

2 +
(α̂+β̂)|Zkj|

2

(18)

where γ ∈ (0, 1), α, β, α̂, β̂ are positive scalars such that

a(Gj) + a(Ĝk) − (
1

2α
+

1

2β
)|Zj

k| − (
1

2α̂
+

1

2β̂
)|Zkj | > 0,

(19)

then the entire NCSs is L2 stable from W =
col{W1, W2, . . . , WM} to Y = col{Y1, Y2, . . . , YM}, with

Wj = [wT
1j , w

T
2j , . . . , w

T
Nj ]

T denoting the disturbance vector

of cell j and Yj = [yT
1j , y

T
2j , . . . , y

T
Nj]

T denoting the output

vector of cell j, for j = 1, 2, . . . , M .

The proof of Theorem 1 can be found in [16].

Remark 2: A straightforward way to reduce the commu-

nication frequency among the interconnected systems is by
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maximizing the communication triggering threshold for each

subsystem. In view of the the triggering condition (17), if we

choose α = β = α̂ = β̂ and ck = sj = 1, then one can verify

that

max
α

{√
γσ

(
|Zj

k|, |Zkj |
)}

=

√
γ
[
a(Gj) + a(Ĝk)

]

2
(
|Zj

k| + |Zkj |
) , (20)

and in this case, we can trigger a communication broadcast

whenever

‖ekj(t)‖2 =

√
γ
[
a(Gj) + a(Ĝk)

]

2
(
|Zj

k| + |Zkj |
) ‖ykj(t)‖2. (21)

Moreover, in view of (21), one can conclude that communi-

cation frequency can be reduced with a larger value of the

ratio
a(Gj)+a(Ĝk)

|Zj

k
|+|Zkj |

, which can be achieved by improving the

connectivity of the communication graph while reducing the

number of neighbors of each node in the graph.

Remark 3: With the cellular model employed in this pa-

per, one can observe from the analysis above that adding

additional cells (i.e., groups of agents) into the system may

not increase the communication frequency in the network

significantly if the network topology is optimally designed

to maximize the ratio
a(Gj)+a(Ĝk)

|Zj

k
|+|Zkj|

. Also, adding additional

cells may not impact the communication frequency within

other cells.

Remark 4: Note that A3 requires that ρk > 0. For the case

when the subsystem has ρk < 0, we could design a local

controller to render the subsystem strictly output passive(i.e.,

implement the subsystem with a large output feedback gain

K > 0) so that A3 can be satisfied.

Another question need to be answered is how often should

each subsystem broadcast its output information to its neigh-

bors based on the triggering condition shown in Theorem 1?

In general, it is not easy to give a common lower bound on

the inter-event time since we are dealing with heterogeneous

multi-agent systems, and in many situations, zeno inter-event

time cannot be avoided unless a specified lower bound on

the inter-event time is imposed. In the following proposition,

we give an analysis of the inter-event time. Although we

cannot get a common lower bound on the inter-event time,

but our analysis shows that the inter-event time is related to

the topology of the underlying communication graph which

is important from the design perspective of large scale NCSs.

Note that since ‖ekj(t)‖2 = ‖ykj(t) − ykj(t
n
kj)‖2 for t ∈

[tnkj , t
n+1
kj ], ∀n, we have

‖ekj(t)‖2 ≥ ‖ykj(t
n
kj)‖2 − ‖ykj(t)‖2

⇒ ‖ykj(t)‖2 ≥ ‖ykj(t
n
kj)‖2 − ‖ekj(t)‖2,

(22)

so a sufficient condition for

‖ekj(t)‖2 ≤
√

γσ
(
|Zj

k|, |Zkj |
)
‖ykj(t)‖2, ∀t ≥ 0 (23)

to hold is given by

‖ekj(t)‖2 ≤

√
γσ

(
|Zj

k|, |Zkj |
)

√
γσ

(
|Zj

k|, |Zkj |
)

+ 1
‖ykj(t

n
kj)‖2, (24)

for t ∈ [tnkj , t
n+1
kj ], ∀n. For the following analysis, we will

consider the triggering condition given by

‖ekj(t)‖2 =
κ

√
γσ

(
|Zj

k|, |Zkj |
)

√
γσ

(
|Zj

k|, |Zkj |
)

+ 1
‖ykj(t

n
kj)‖2, (25)

where κ ∈ (0, 1). One can see that this is a tighter triggering

condition compared with the triggering condition (17) since

(24) is a sufficient condition for (23). We use it for analysis

purpose to reveal some important interactions between the

topology of the underlying communication graph and the

inter-event time.

Proposition 1: Consider the dynamics of Hkj given by

Hkj :

{
ẋkj = fkj(xkj , ukj)

ykj = hkj(xkj),
(26)

Let the following assumptions be satisfied

1) fkj : R
m × R

m → R
m is Lipschitz continuous on

compact set;

2) hkj : R
m → R

m is Lipschitz continuous on compact

set and it belongs to a sector [akj , bkj ] such that

akj‖xkj‖2
2 ≤ xT

kjhkj(xkj) ≤ bkj‖xkj‖2
2, where 0 <

akjbkj < ∞;

3) ‖∂hkj(xkj)
∂xkj

‖2 ≤ γkj , where 0 < γkj < ∞;

4) ‖wkj(t)‖2 ≤ d, 0 < d < ∞, ∀t ≥ 0;

then the inter-transmission time [tn+1
kj − tnkj ] implicitly deter-

mined by the triggering condition (25) is lower bounded by a

monotone increasing function with respect to σ
(
|Zj

k|, |Zkj |
)
.

Proof: Since for t ∈ [tik, tik+1], we have

d

dt
‖ekj(t)‖2 =

d(ekj(t)
T ekj(t))

1

2

dt
=

ekj(t)
T ėkj(t)

‖ekj(t)‖2

≤ ‖ėkj(t)‖2 = ‖ẏkj(t)‖2

=
∥∥∂hkj(xkj)

∂xkj

ẋkj

∥∥
2
≤

∥∥∂hkj(xkj)

∂xkj

∥∥
2
‖ẋkj‖2

= γkj

∥∥fkj

(
xkj ,−[wkj(t) +

∑

i∈N j

k

sj(ŷij − ŷkj)

+
∑

h∈Nkj

ck(ŷkh − ŷkj)]
)∥∥

2

≤ γkjLkj‖xkj‖2 + γkjLkj

∥∥wkj(t) +
∑

i∈N j

k

sj(ŷij − ŷkj)

+
∑

h∈Nkj

ck(ŷkh − ŷkj

)∥∥
2
,

(27)

where Lkj is the Lipschitz constant of fkj(xkj , ukj). More-

over, since akj‖xkj‖2
2 ≤ xT

kjhkj(xkj) ≤ bkj‖xkj‖2
2, where

0 < akjbkj < ∞, one can verify that

‖xkj‖2

‖ykj‖2
≤ max

{
1

|akj |
,

1

|bkj |

}
= ζkj , (28)
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we can get

d

dt
‖ekj(t)‖2 ≤ γkjLkjζkj

(
‖ekj(t)‖2 + ‖ykj(t

n
kj)‖2

)

+ γkjLkjd

+ γkjLkj

∥∥
∑

i∈N j

k

sj(ŷij − ŷkj) +
∑

h∈Nkj

ck(ŷkh − ŷkj

)∥∥
2
,

(29)

So the evolution of ‖ekj(t)‖2 for t ∈ [tnkj , t
n+1
kj ] is bounded

by the solution to

ṗkj(t) = γkjLkjζkj

(
pkj(t) + ‖ykj(t

n
kj)‖2

)
+ γkjLkjd

+ γkjLkj

∥∥
∑

i∈N j

k

sj(ŷij − ŷkj) +
∑

h∈Nkj

ck(ŷkh − ŷkj

)∥∥
2
,

(30)

with pkj(t
n
kj) = 0 (since at t = tnkj , we have ekj(t

n
kj) =

ykj(t
n
kj)− ykj(t

n
kj) = 0), the corresponding solution to (30)

during [tnkj , t
n+1
kj ] is given by

pkj(t) =
Ĉ2

Ĉ1

(
eĈ1(t−tn

kj) − 1
)

(31)

where Ĉ1 = γkjLkjζkj , Ĉ2 = γkjLkjζkj‖ykj(t
n
kj)‖2 +

γkjLkjd+γkjLkj

∥∥ ∑
i∈N j

k

sj(ŷij− ŷkj)+
∑

h∈Nkj
ck(ŷkh−

ŷkj

)∥∥
2
. So we can get a lower bound of the time for

‖ekj(t)‖2 to evolve from 0 to
κ

√
γσ

(
|Zj

k
|,|Zkj|

)
√

γσ
(
|Zj

k
|,|Zkj|

)
+1

‖ykj(t
n
kj)‖2

based on (31) which is given by

tn+1
kj − tnkj ≥ τn

kj

=
1

ĉ1
ln

(
1 +

ĉ1

ĉ2

κ

√
γσ

(
|Zj

k|, |Zkj |
)

√
γσ

(
|Zj

k|, |Zkj |
)

+ 1
‖ykj(t

n
kj)‖2

)
,

(32)

the proof is completed.

Remark 5: In view of (32), one can verify that when∥∥ ∑
i∈N j

k

sj(ŷij − ŷkj) +
∑

h∈Nkj
ck(ŷkh − ŷkj

)∥∥
2

is large,

τn
kj will be relatively small, which implies more frequent

communication updates between coupled subsystems are

needed when their outputs are far from agreement.

One should be aware that while our analysis of the inter-

event time follows the analysis shown in [6] by restricting

the output belonging to a bounded sector of the state, there

are other ways in the literature to estimate the inter-event

time based on different assumptions adopted in the analysis.

It is possible to obtain a less conservative analysis on the

inter-event time. We just use a straight-forward way to show

how the topology of the communication graph can impact

on the inter-event time with event-driven communication.

V. EXAMPLE

Example: Consider a large scale NCSs which is composed

of five cells and each cell has five interconnected subsystems.

Assume that each subsystem’s dynamic is given by

Hkj :

{
ẋkj = −akjxkj + ukj

ykj = xkj ,
(33)

for j = 1, . . . , 5 and k = 1, . . . , 5, where akj is ran-

domly chosen from [4,10], one can verify that in this case

mink{ρk} = 4 . The coupling of the outputs inside a cell is

described by the Laplacian given by

Lj =





1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




for j = 1, . . . , 5. (34)

There is also output coupling among subsystem H11, H12,

. . . , H15, and the coupling is described by the following

Laplacian

L̂k =





2 −1 0 0 −1
0 2 −1 −1 0
0 −1 1 0 0
−1 0 0 1 0
−1 0 0 0 1




, k = 1. (35)

In this case, we can obtain a(Gj) = 0.6910 for j = 1, . . . , 5;

a(Ĝk) = 0.5, for k = 1, and a(Ĝk) = 0 for k = 2, . . . , 5.

Based on Theorem 1, with γ = 1 (assuming no external

disturbances) one can calculate that the triggering condition

for each subsystem which is given by

‖e1j(t)‖2 = 0.1985‖y1j(t)‖2, for j = 1, 2;

‖e1j(t)‖2 = 0.2977‖y1j(t)‖2, for j = 3, 4, 5;

‖ekj(t)‖2 = 0.3455‖ykj(t)‖2, for

k = 2, . . . , 5, j = 1, . . . , 5.

(36)

We add external disturbance into each subsystem which is an

uniformly distributed random signal on the interval [0, 0.5],
the simulation results for subsystem H23 are shown in Fig.3,

with σkj denoting the evolution of
‖ekj(t)‖2

‖ykj(t)‖2

. The evolutions

of the outputs in each cell are shown in Fig.4. If we change

the output coupling among subsystem H11, H12, . . . , H15 to

be

L̂k =





1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




for k = 1, (37)

then one can verify that in this case the triggering condition

for each subsystem is given by

‖ekj(t)‖2 = 0.3455‖ykj(t)‖2, ∀k, j, (38)

in this case, we get a larger triggering threshold by chang-

ing the topology of the underlying communication graph.

We compare the simulation results of H11 in these two

different communication configuration, which is shown in

Fig. 5: column (a) shows the simulation result for the first

configuration, column (b) shows the simulation result for

the second configuration when we have a larger triggering

threshold for each subsystem. A significant reduction of the

communication frequency can be observed.
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Fig. 3: simulation result of H23
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Fig. 4: evolutions of the outputs in each cell
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Fig. 5: comparison of different configurations

VI. CONCLUSION

In this paper, we propose a distributed event-driven com-

munication strategy for stabilization of large-scale NCSs,

where each subsystem broadcasts its output information

to its neighbors only when the subsystem’s local output

novelty error exceeds a specified threshold. The trigger-

ing condition is related to the topology of the underlying

communication graph. If the triggering condition derived in

this paper is guaranteed, the NCSs is finite-gain L2 stable.

We also provide a way to analyze the inter-event time.

The results shown in this paper are useful in the study

of the interactions between the communication frequency,

the topology of the underlying communication graph and

the performance for large scale deployment of distributed

networked heterogeneous multi-agent systems with event-

driven communication. Although only stability problem has

been investigated in the current paper, extensions to output

synchronization problem of multi-agent system with event-

driven communication(consider both communication delay

and signal quantization) can be found in [17].
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