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Background
Movement primitives are a well-established, 
modular approach to robot motion planning. 
Dynamic movement primitives (DMPs) are a 
popular control framework based on nonlinear 
differential equations [1]. Stable heteroclinic 
channels (SHCs) are trajectories that connect 
saddle equilibria in phase space [2]. When 
DMP attractors are replaced with SHC 
saddles, stable heteroclinic channel-based 
movement primitives (SMPs) are formed [3].
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𝜏 − time-scaling term
y – relevant system variable (e.g.
end-effector position)
𝛼!, 𝛽! – system damping & stiffness
g – goal position of system
f – external force applied to system 
by controller
K – total number of underlying 
kernel functions

wi – weight of ith kernel
x – canonical state of system
𝛼" – damping term
𝜎# – factor for width of ith kernel
ci – center of ith kernel
N – number of sensors
𝛼#, 𝛽#, 𝜈#, 𝜌#$ – system parameters
Cij – coupling matrix
zj - noise

System Parameters
Horchler et al [4] characterize the SHC system 
parameters α, β, ν as:
• α à growth rate of the kernel (how fast the 

intrinsic excitation grows the kernel dimension)
• β à magnitude (maximum amplitude of the 

waveform)
• ν à saddle value (insensitivity to noise)

• Maintains system stability
• Time independent
• Visualization feature: user-friendly 

system initialization
• Characterizable system parameters
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• Popular, modular control 

framework
• Attractor points as 

kernels – maintain 
system stability

• Neural activation model
• Saddle points connected in 

phase space

Conclusions
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• In the task space, the SMP forcing function 
follows the weighted kernel locations

• Kernel weights can be initialized spatially –
even sampled from the trajectory itself.
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• 𝛼 affects trajectories before it (𝛼 > 1) and after it (𝛼 < 1). 
Increasing all 𝛼 rotates and shrinks the trajectory. 
Increasing 𝛼 decreases time spent around that kernel.

• 𝛽 affects the kernel-specific trajectory. Scaling (𝛽 < 1) 
and rotation (𝛽 > 1) occur when varying all 𝛽. Increasing 
𝛽 increases the time spent around the entire trajectory.

• 𝜐*+, affects the trajectory after it (𝜐 > 1) ; no change is 
observed when 𝜐 < 1. Increasing all 𝜐, increases the 
time around the trajectory, especially in the kernel 
vicinities.
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