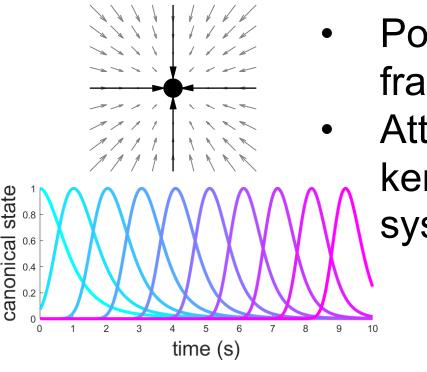
Stable Heteroclinic Channel-based Movement Primitives for Robotic Control

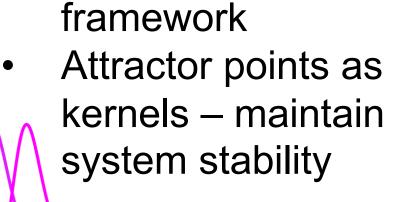
Natasha Rouse & Kathryn Daltorio Department of Mechanical and Aerospace Engineering

Movement primitives are a well-established, modular approach to robot motion planning. Dynamic movement primitives (DMPs) are a popular control framework based on nonlinear differential equations [1]. Stable heteroclinic channels (SHCs) are trajectories that connect saddle equilibria in phase space [2]. When DMP attractors are replaced with SHC saddles, stable heteroclinic channel-based movement primitives (SMPs) are formed [3].

Dynamic Movement Primitives (DMPs)

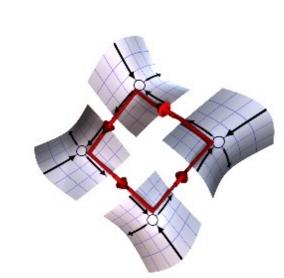


Popular, modular control



Background

Stable Heteroclinic Channels (SHCs)



Neural activation model

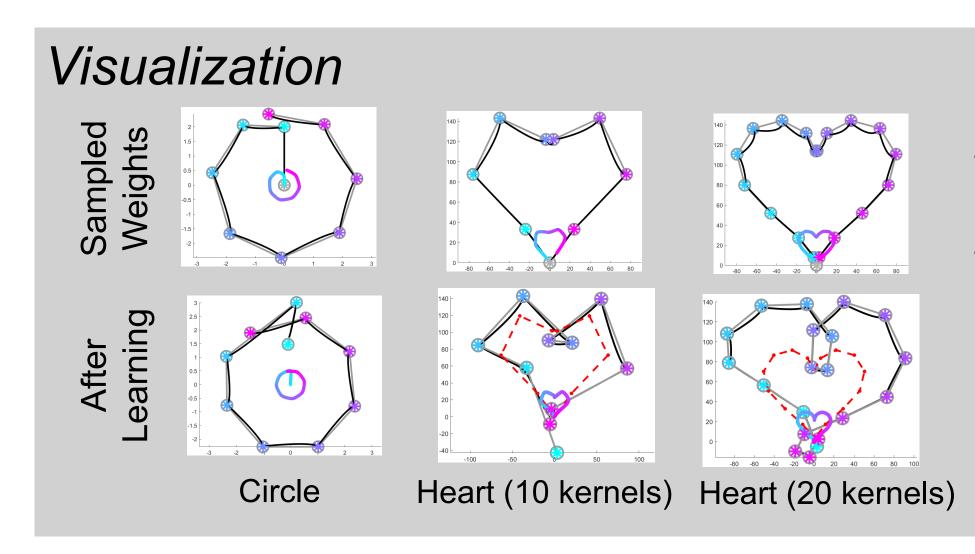
Saddle points connected in phase space

Heteroclinic Channel by Alexander Steele Kernbaum is licensed under CC BY-NC 4.0.

Stable Heteroclinic Channel-based Movement Primitives (SMPs)

- Maintains system stability
- Time independent
- Visualization feature: user-friendly system initialization
- Characterizable system parameters

SMP Features



Weights and Trajectory in the Taskspace

In the task space, the SMP forcing function follows the weighted kernel locations

- Kernel weights can be initialized spatially even sampled from the trajectory itself.
- Learned weights Forcing function

 $\alpha_4 = 20$

Single Alpha

alpha value

 $\alpha_4 = 1$

 $\alpha_4 = 5$

radius of curvaturetime (s)

Weights sampled from forcing function

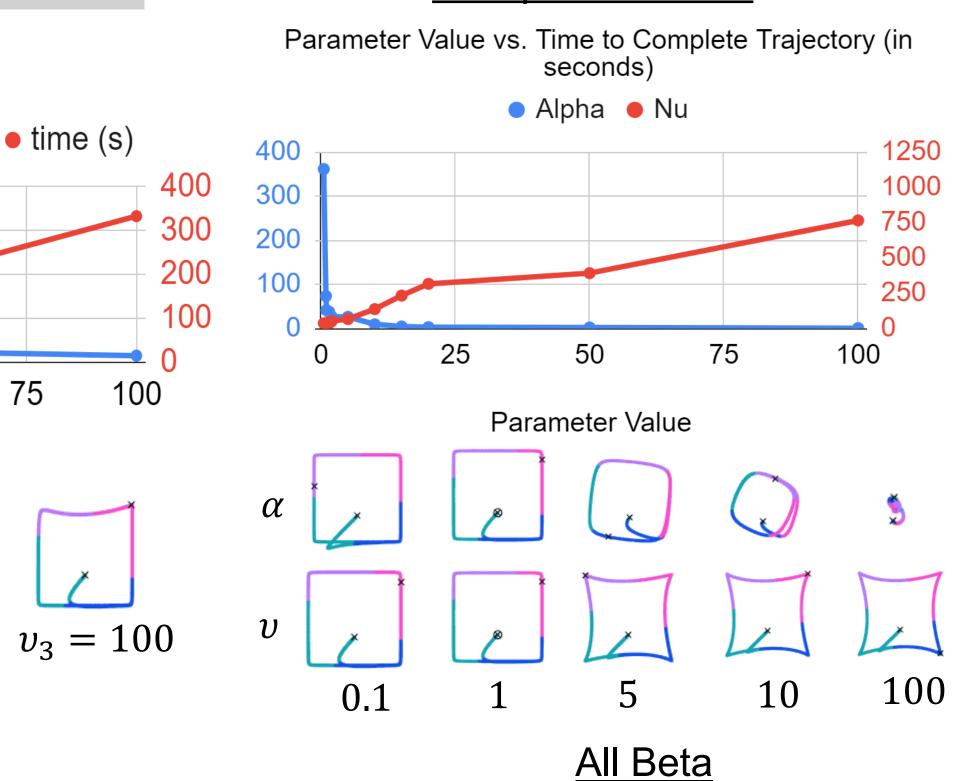
150

System Parameters

Horchler et al [4] characterize the SHC system parameters α, β, v as:

- $\alpha \rightarrow$ growth rate of the kernel (how fast the intrinsic excitation grows the kernel dimension)
- $\beta \rightarrow$ magnitude (maximum amplitude of the waveform)
- v → saddle value (insensitivity to noise)

All Alpha vs All Nu



Conclusions

100

50

- α affects trajectories before it ($\alpha > 1$) and after it ($\alpha < 1$). Increasing all α rotates and shrinks the trajectory. Increasing α decreases time spent around that kernel.
- β affects the kernel-specific trajectory. Scaling ($\beta < 1$) and rotation ($\beta > 1$) occur when varying all β . Increasing β increases the time spent around the entire trajectory.
- v_{SMP} affects the trajectory after it (v > 1); no change is observed when v < 1. Increasing all v, increases the time around the trajectory, especially in the kernel vicinities.

Single Beta

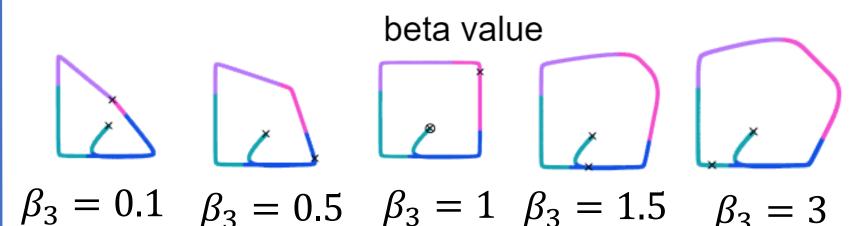
 $v_3 \leq 1$

Single Nu

radius of curvaturetime (s)

nu value





Area created by closed trajectory timenormalized area 0.5 1.0 1.5 2.0 2.5 3.0 beta value

SMP Structure

$$\tau \ddot{y} = \alpha_{y} (\beta_{y}(g - y) - \dot{y}) + f$$

$$f(x_{i}) = \sum_{i=1}^{K} x_{i} w_{i}$$

$$\tau dx_{i} = x_{i} \left(\alpha_{i} - \sum_{j=1}^{K} \rho_{ij} x_{j}\right) dt + \sum_{j=1}^{N} C_{ij} z_{j}$$

$$\rho_{ij} = \begin{cases} \alpha_{i} / \beta_{i}, & \text{if } i = j \\ \frac{\alpha_{i} - \alpha_{j} / \nu_{j}}{\beta_{j}}, & \text{if } i = j \oplus 1 \\ \frac{\alpha_{i} + \alpha_{j}}{\beta_{j}}, & \text{otherwise} \end{cases}$$

 τ – time-scaling term

by controller

- y relevant system variable (e.g. end-effector position)
- α_y , β_y system damping & stiffness c_i center of ith kernel g – goal position of system
- external force applied to system
- K total number of underlying kernel functions
- w_i weight of ith kernel
- x canonical state of system α_{x} – damping term
- σ_i factor for width of ith kernel
- N number of sensors
- α_i , β_i , ν_i , ρ_{ij} system parameters
- C_{ii} coupling matrix
- z_i noise

References

[1] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. "Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors," Neural Comput., vol. 25, pp. 328-373, 2013.

[2] M. Rabinovich, R. Huerta, and G. Laurent, "Neuroscience: Transient dynamics for neural processing," pp. 48-50, Jul 2008. doi: 10.1126/science.1155564 [3] N. A. Rouse and K. A. Daltorio, "Visualization of Stable Heteroclinic Channel-Based Movement Primitives," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2343-2348, April 2021, doi: 10.1109/LRA.2021.3061382.

[4] Horchler, A. D., Daltorio, K. A., Chiel, H. J., & Quinn, R. D. (2015). Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration & Biomimetics, 10(2), 026001. https://doi.org/10.1088/1748-3190/10/2/026001

Acknowledgements

This work was funded by NSF Grant #1850168. The authors would like to thank Naomi Hourihane for assistance in developing the manuscript for the published previous work.

