
Background and Problem
Information Flow Tracking (IFT) can be used to identify what inputs affect

which outputs. This is helpful in verification to determine if private inputs

flow to public outputs, which indicates an information leak.

Our Approach: Static IFT (SIFT) ResultsMotivation
Recently discovered attacks that exploit vulnerabilities in popular

hardware allow private information to be leaked to public domains.

Private Information Public Domain

Hardware Vulnerabilities

0

20

40

60

80

100

120

140

160

AES_T400 AES_T1000 AES_T1100 AES_T1200 AES_T1800 AES_T1900

Se
co

nd
s

Runtime of SIFT, RTLIFT, and GLIFT

SIFT RTLIFT GLIFT

We have preprocessed and tested various benchmarks in order to ensure

the validity of both SIFT and the error localization approach as a whole.

Our next step is to expand evaluation by synthesizing benchmarks that

are more relevant in the realm of verification

Based on our tests, our tool, SIFT, is slower than RTLIFT but faster than

GLIFT. However, SIFT provides more information than RTLIFT because

SIFT provides the path of information leakage.

Acknowledgements
We would first like to thank Professor Ryan Kastner and Armaiti

Ardeshiricham. Their help and guidance has been invaluable throughout

this process. We would also like to thank Professor Christine Alvarado for

giving us this opportunity to work on this project through the Early

Research Scholars Program. (ERSP). ERSP is a program at UC San Diego

aimed at introducing undergraduate students to graduate level research.

We want to develop a tool that provides more information, such as the

source of the leakage and the path of the leaked data.

We print out all the variables that the tainted inputs taint. Based on user

input, we either print the tainted paths of each output or the tainted

path of a specific output.

(Verilog)
assign x = a + b;
assign y = x * c;
assign z = y - c;

Input: a
Output: z 

Output:
a-> x -> y -> z

=

z -

y c

=

y *

x c

=

x +

a b

SIFT

Hardware 
Design 

File
Yosys Abstract 

Syntax Tree Parse
Tracked 

Information 
Flow

SIFT

Hardware 
Design File 

(Verilog)
Yosys Abstract 

Syntax Tree Parse
Tracked 

Information 
Flow

To prevent these attacks, hardware designers must eliminate these

vulnerabilities. One approach is by using verification to uncover such

vulnerabilities and error localization to resolve them.

We analyze Verilog code by using a framework called Yosys, which

creates an Abstract Syntax Tree (AST) of the design, and analyzing that

resulting AST. We label sensitive input variables as tainted and as they

interact with other variables, they taint output variables.

Previous IFT Tools

Trace the path of inputs through the 
system to discover exactly when 
private information flows to public 
domain.

Proposed 
Solution

Large overhead and lower level abstraction 
makes this tool less effective in verification. 

Gate 
Level IFT 
(GLIFT)

Attempts to solve the issues with GLIFT but 
only returns binary answers as to whether 
or not an input affects an output.

Register 
Transfer 
Level IFT 
(RTLIFT)

After testing simple, singular modules simulating simple basic arithmetic

methods, we tested more complex programs, which we gathered from

Trust-Hub, a hardware security resource funded by the National Science

Foundation (NSF). These programs contained current hardware encryption

algorithms that had certain security design flaws.

In the following example, we mark a as tainted. a taints x, which taints

y, which taints z.

Our tool identifies 
this path whereas 
previous tools 
would only 
determine that a
affects z.

Novelty

If a and x were 
both private, but y
and z were both 
public, the first 
instance of the 
leak actually 
occurred in the 
second statement. 

Example

Our tool helps 
hardware 
designers easily 
minimize security 
flaws by 
identifying where 
the leakage 
precisely occurs.

Impact

Static Information Flow Tracking (SIFT) Analysis for Hardware Design Verification
Christie Lincoln, Lisa Luo, Amir Uqdah, Alvin Zhang 
Advisors: Armaiti Ardeshiricham, Ryan Kastner

Error 
Localization

Counter-
example 

Trace

SIFT

SMT 
Solver

Error localization can identify where a program is failing a security

property. A key aspect of this is the need to track inputs through a

system. One way is through information flow tracking.

SIFT

SIFT is given all inputs that are critical to 
a failing security property of the 
system

SMT 
Solver

The State variables that SIFT identifies 
are are tested to determine if they are 
critical to the verification failure

SIFT’s Impact to Error Localization:

Ongoing: Error Localization

Verification
Run program with security 
properties through SMT 
solver to generate 
counterexample

Counterexample 
Reduction

Use SMT solver to 
determine which inputs 
are critical to failing the 
property

SIFT
Use SIFT to find which 
state variables are 
affected by critical 
inputs

Compute suspicious state 
variables

Use SMT solver to determine 
which state variables 
returned by SIFT are critical 
to failing security properties


