

Summer Showcase

Sadman Ahmed Shanto

Work-Lab

Project: Traffic Control with Connected and Autonomous Vehicles

Principal Investigator: Daniel Work, PhD

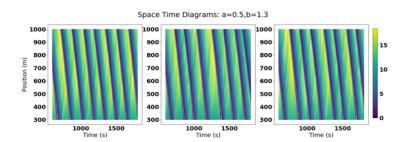
Mentor: George Gunter, (future PhD)

Timeline

- Week 1: Papers, papers, some more papers + getting familiar with Flow
- Week 2: I-24 network into Flow, #ShutDownSTEM day, simulated RDS data
- Week 3: Sensitivity analysis of the Intelligent Driver Model (IDM)
- Week 4: More sensitivity analysis (analytical) + started testing Optimization routines
- Week 5: Head first dive into the bizarre world of Optimization and the epic quest to find an efficient routine
- Week 6: Nelder-Mead to the rescue + beginning of attempt at a decent calibration
- Week 7: A week of head scratching (poor calibration results)
- Week 8: Pivot point and invaluable insights from mentor and PI + BIG DATA!
- Week 9: Race for TRB paper (Challenges of Microsimulation Calibration with Traffic Waves using Aggregate Measurements)
- Week 10: Professional Development + Grad School Tips

High Level Summary of Paper

FIGURE 2: A graphic representing the road geometry combined with a single radar sensor generating aggregate speed measurements.


FIGURE 6: Illustration of the time series measurements recorded for the three simulations under (a, b) = (0.5, 1.3) (left) and (a, b) = (1.2, 1.3) (right).

$$egin{aligned} \dot{v}_lpha &= rac{\mathrm{d} v_lpha}{\mathrm{d} t} = a \, \left(1 - \left(rac{v_lpha}{v_0}
ight)^\delta - \left(rac{s^*(v_lpha, \Delta v_lpha)}{s_lpha}
ight)^2
ight) \ & ext{with } s^*(v_lpha, \Delta v_lpha) = s_0 + v_lpha \, T + rac{v_lpha \, \Delta v_lpha}{2 \, \sqrt{a \, b}} \end{aligned}$$

$\underset{\theta}{\text{minimize}} L(Y_{\text{real}}, Y_{\text{sim}}(\theta, \lambda))$

Loss Function	Average % Failure	Average Divergence in a	Average Divergence in b
ME:	49.1	0.40	0.25
MNE:	49.0	0.40	0.25
RMSNE:	47.5	0.39	0.24
MANE:	47.1	0.37	0.24
SSE:	44.4	0.28	0.20
RMSE:	43.5	0.26	0.17
MAE:	42.1	0.24	0.19
U:	31.4	0.19	0.18

TABLE 2: Reporting of three different error metrics on each candidate loss function. All loss functions are found to have similar and high degrees of error in their performance.

FIGURE 4: Three time space diagrams colored by speed in (m/s) produced from identical simulations except for the random seed, with (a, b) = (0.5, 1.3). Waves are present and small variations occur in the phase and amplitude of the waves.

Great Lessons

- Traffic is MUCH more complicated than I EVER imagined
- Math is just awesome!
- I really enjoy programming
- Need to work on taking initiatives
- Communication is key
- Passion leads to perseverance
- Leading by example

Notable Moments

- Accidently deleted data from 5 hours of simulation on my local machine...
- Started dreaming about optimization from Week 5....
- Actually got a viable solution from one of those dreams....