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Motivation

* Human physical interaction with complex dynamic objects is superior to contemporary robots despite markedly
inferior resources (neuro-mechanics).

* How can high degree-of-freedom modern robotic systems be controlled, e.g. humanoids?

* Interaction is difficult, it often involves closed chain manipulation and transitions in and out of contact.

 Computational complexity limits real-time control using optimization-based methods.

-Slow Muscles (10 Hz)
-Slow Nerves (100 m/s)
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Impedance Superposition in Robots

Impedance control facilitates programming dynamic interactive

behavior on robots and enables scale-up to complex tasks. Tensioning
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 Complex interactive tasks can be broken down into sub-tasks.

* A controller based on dynamic primitives can be implemented for

each sub-task, and these controllers can be linearly superimposed. Apply Normal Force
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* Controller compliance can tackle poorly modeled tasks in a
manner similar to humans.

* Seamless transition into and out of contact, along with operation
into and out of singularity.

* In highly redundant manipulation scenarios, the complexity of the
problem scales as the number of impedance sub-tasks, rather than
the total number of robot joints. This enables intelligent scale-up.
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matrix for Jacobian inversion

e Study projector effects on forceful interaction
r=J' [K,(xg—x) + B,(a — )]

N |K,(q0 — q) — Byq|
N= (I-J%Jg""
J* =w gt gw-tghH)-!

05 1 15 05 1 15
Crank Postion (rad/n) Crank Postion (rad/n)

2

2020 NSF National Robotics Initiative Principal Investigators' Meeting Award ID#: NSF-NRI 1637824 (NH)

February 27-28, 2020 | Arlington, Virginia NSF-NRI 1637854 (DS)




