CPS: synergy: collaborative research: Support for security and safety of programmable IoT systems

Objectives

Detect and prevent bugs in IoT applications. Risks:

- Malicious sensor inputs
- safety and security violations

Exploring several defense strategies

- Provide an information flow security policy layer
- Rethinking how permissions are granted in systems to reduce security risks while reducing user prompts
- Develop a modeling and adversarial testing framework

FlowFence: Information flow policy support

Key Contributions:

- Developer support: Application-level sandboxes for handling sensitive data on Android-based systems
- Information flow policies on sandboxes
- Support for fine-grain network policies
- Confining sensitive input such as passwords
- Integration with SmartThings devices
- Open source. Try it out!
- https://github.com/earlence/FlowFence_Release

PIs: Darko Marinov, University of Illinois, Atul Prakash, University of Michigan marinov@Illinois.edu, aprakash@umich.edu

Risk is asymmetric. Risk-based grouping can be better than functional grouping!

Acknowledgements: NSF Grants 1646392 and 1646305

Adversarial Testing Pipeline for Sensor inputs

CVPR 2018 paper and GitHub code available. See https://iotsecurity.engin.umich.edu

Ongoing Work

- Cross-layer defenses across
- Secure processors
- OS
- Apps
- Network of devices and apps
- IoT modeling and adversarial testing support

