Symmetries in Nonlinear Cyber-Physical Systems for Compositionality

Notre Dame Team: Bill Goodwine, Panos Antsaklis and Vijay Gupta

February 24, 2012

Introduction and Motivation

Introduction

- Introduction and Motivation
- Outline of
 Presentation

Symmetric Systems

Main Results

Examples

- Optimal Control of Symmetric Systems
- Control of Mechanical Systems

- Overall goal: results for system integration through compositionality.
- Compositionality: system-level properties can be computed from local properties of components
 - System-level properties *preserved* when expanding system.
- Initial focus: invariant properties for symmetric systems.
- Emphasis on general results, not limited to specific system dynamics.
- Initial results: symmetric systems and stability.
- These results are Lyapunov-based, so the natural extension is to passivity.
- Also working toward use of *approximate* symmetries.
- [9, 12, 10, 11, 14, 13, 4, 19]

Introduction

- Introduction and Motivation
- Outline of

Presentation

Symmetric Systems

Main Results

- Examples
- Optimal Control of Symmetric Systems

Control of Mechanical Systems

- Nonlinear Symmetric Systems and Compositionality
- Nonlinear Compositional Stability Results (V-based)
 - stability for "growing" systems
 - robustness for "shrinking" and failing systems
- Optimal Control for Nonlinear Symmetric Systems
 - Mechanical Cyber-Physical Systems
 - Ongoing and Future work

Introduction

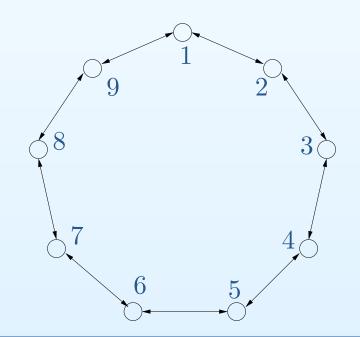
- Introduction and Motivation
- Outline of Presentation

Symmetric Systems

Main Results

- Examples
- Optimal Control of Symmetric Systems
- Control of Mechanical Systems

- Nonlinear Symmetric Systems and Compositionality
- Nonlinear Compositional Stability Results (V-based)
 - stability for "growing" systems
 - robustness for "shrinking" and failing systems
- Optimal Control for Nonlinear Symmetric Systems
 - Mechanical Cyber-Physical Systems
- Ongoing and Future work



Introduction

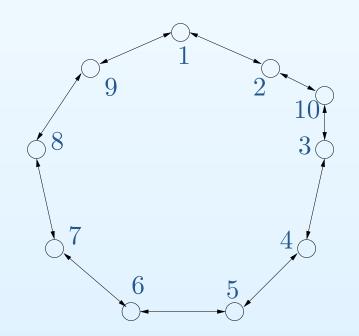
- Introduction and Motivation
- Outline of Presentation

Symmetric Systems

Main Results

- Examples
- Optimal Control of Symmetric Systems
- Control of Mechanical Systems

- Nonlinear Symmetric Systems and Compositionality
- Nonlinear Compositional Stability Results (V-based)
 - stability for "growing" systems
 - robustness for "shrinking" and failing systems
- Optimal Control for Nonlinear Symmetric Systems
 - Mechanical Cyber-Physical Systems
- Ongoing and Future work



Introduction

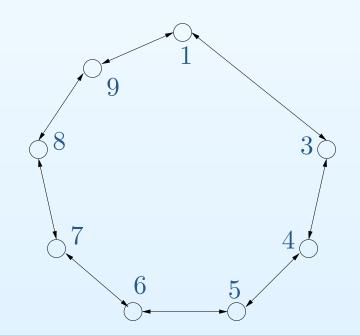
- Introduction and Motivation
- Outline of Presentation

Symmetric Systems

Main Results

- Examples
- Optimal Control of Symmetric Systems
- Control of Mechanical Systems

- Nonlinear Symmetric Systems and Compositionality
- Nonlinear Compositional Stability Results (V-based)
 - stability for "growing" systems
 - \circ $\;$ robustness for "shrinking" and failing systems
- Optimal Control for Nonlinear Symmetric Systems
 - Mechanical Cyber-Physical Systems
- Ongoing and Future work



Symmetric Systems

Introduction

Symmetric Systems

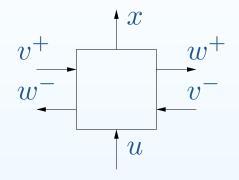
- Symmetric Systems
- Periodic
- Interconnections
- Group and Graph
- Theory Representation
- Symmetric and
- Equivalent Systems

Main Results

Examples

- Optimal Control of Symmetric Systems
- Control of Mechanical Systems

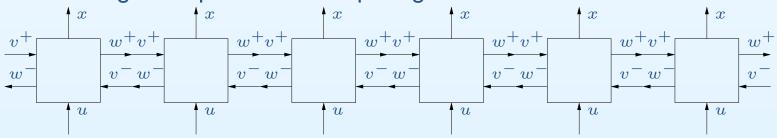
Consider a basic building block element:



where

- x is the state vector;
- *u* is the vector of control inputs;
 - w^{\pm} are the *outputs*; and,
 - v^{\pm} are the coupling inputs.

Connecting the inputs to the outputs gives



Periodic Interconnections

Introduction

Symmetric Systems

- Symmetric Systems
- Periodic

Interconnections

• Group and Graph

Theory Representation

• Symmetric and

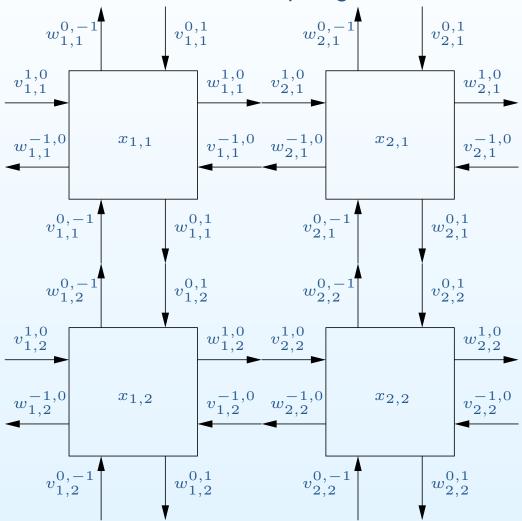
Equivalent Systems

Main Results

Examples

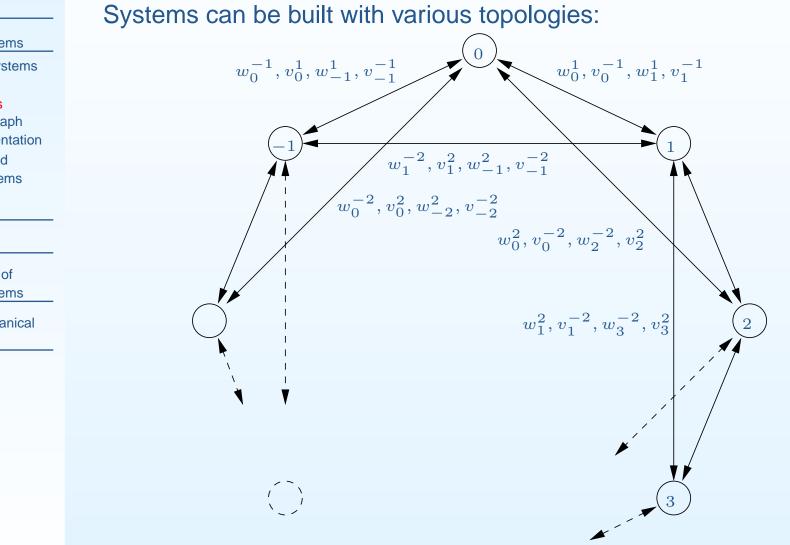
Optimal Control of Symmetric Systems

Control of Mechanical Systems



Systems can be built with various topologies:

Periodic Interconnections



Introduction

Symmetric Systems

- Symmetric Systems
- Periodic
- Interconnections
- Group and Graph
- **Theory Representation**
- Symmetric and

Equivalent Systems

Main Results

Examples

Optimal Control of Symmetric Systems

Control of Mechanical Systems

Group and Graph Theory Representation

Introduction

Symmetric Systems

- Symmetric Systems
- Periodic
- Interconnections
- Group and Graph
- Theory Representation
- Symmetric and Equivalent Systems

Main Results

Examples

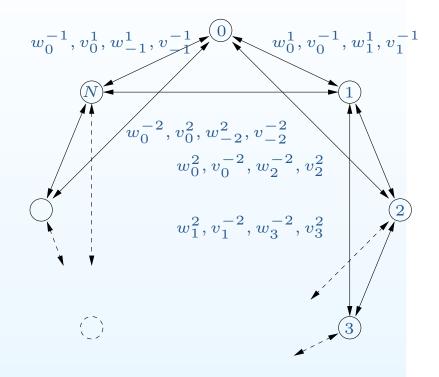
- Optimal Control of Symmetric Systems
- Control of Mechanical Systems

• Represent connectedness with *generators*, $\{s_1, \ldots, s_n\}$ with

 $g_2 = s_i g_1.$

- Cayley Graph:
 - \circ nodes = components
 - \circ edges = communication
- Equivalent connections for two systems if they have the same generators.
- Example:
 - $S = \{-2, -1, 1, 2\}.$
- Each component:

$$\dot{x}_i = f_i(x) + g_i(x)u$$
$$w_i^s(t) = w_i^s(x_i(t)).$$



• Periodic interconnections:

$$v_g^s(t) = w_{s^{-1}g}^s\left(x_{s^{-1}g}(t)\right)$$
$$w_g^s(t) = v_{sg}^s\left(x_g(t)\right)$$

Symmetric and Equivalent Systems

Introduction

Symmetric Systems

• Symmetric Systems

• Periodic

Interconnections

• Group and Graph

Theory Representation

• Symmetric and Equivalent Systems

Main Results

Examples

Optimal Control of Symmetric Systems

Control of Mechanical Systems A symmetric system has components with identical dynamics: $f_{g_1}(x) = f_{g_2}(x), g_{g_1,j}(x) = g_{g_2,j}(x), w_{s^{-1}g_1}^s(x) = w_{s^{-1}g_2}^s(x)$ and identical control laws

$$u_{g_{1},j}\left(x_{1}(t), w_{s_{1}^{-1}g_{1}}^{s_{1}}(x_{2}(t)), \dots, w_{s_{|X|}g_{1}}^{s_{|X|}}(x_{|X|+1}(t))\right) = u_{g_{2},j}\left(x_{1}(t), w_{s_{1}^{-1}g_{2}}^{s_{1}}(x_{2}(t)), \dots, w_{s_{|X|}g_{2}}^{s_{|X|}}(x_{|X|+1}(t))\right)$$

for all $g_1 \in G_1$, $g_2 \in G_2$, $s \in X$, $x \in \mathbb{R}^n$, $(x_1, x_2, \ldots, x_{|X|+1}) \in \mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n$ and $j \in \{1, \ldots, m\}$ where $m = m_{g_1} = m_{g_2}$.

Two systems are *equivalent* if they are both symmetric with equal components and the *same generators*.

Main Results

Introduction

Symmetric Systems

Main Results

Main Results

Examples

Optimal Control of Symmetric Systems

Control of Mechanical Systems

- **Stability:** if a symmetric distributed system is stable, so is any equivalent symmetric system, so can "grow" or "shrink."
 - Growing: useful for analysis/design on a small system with guaranteed invariance for larger equivalent systems
 - Shrinking: reconfigurable robustness
- **Robustness:** stability in the sense of Lyapunov is guaranteed even when components fail without any reconfiguration necessary.
- Requires a symmetric Lyapunov function: $V = \sum_{i \in G} V_i$ where

$$V_{g_1}\left(x_1, w_{s_1^{-1}g_1}^{s_1}(x_2), \dots, w_{s_{|X|}^{-1}g_1}^{s_{|X|}}(x_{|X|+1})\right) = V_{g_2}\left(x_1, w_{s_1^{-1}g_2}^{s_1}(x_2), \dots, w_{s_{|X|}^{-1}g_2}^{s_{|X|}}(x_{|X|+1})\right)$$

for all
$$g_1, g_2 \in G$$
 and $(x_1, x_2, \ldots, x_{|X|+1}) \in \mathbb{R}^n \times \cdots \times \mathbb{R}^n$.

University of Notre Dame

Introduction

Symmetric Systems

Main Results

Examples

• Formation Control

Examples

• Compositionality Robustness Examples

Optimal Control of Symmetric Systems

Control of Mechanical Systems

• From [18] second-order mechanical system agents:

$$\frac{d}{dt} \begin{bmatrix} x_i \\ \dot{x}_i \\ y_i \\ \dot{y}_i \end{bmatrix} = \begin{bmatrix} \dot{x}_i \\ 0 \\ \dot{y}_i \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} u_{i,1} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u_{i,2}.$$
(1)

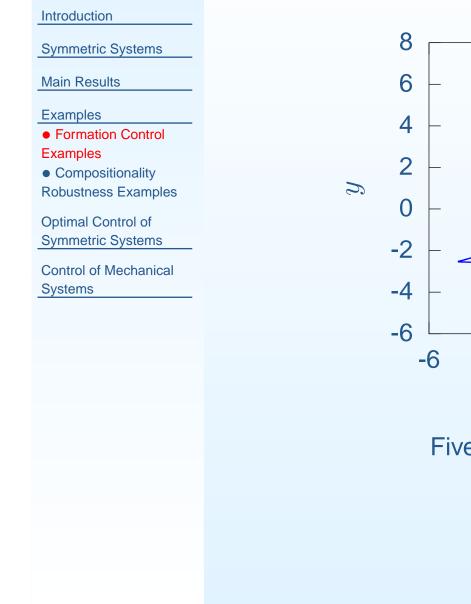
Goal= regular (N+1)-polygon centered at the origin, hence

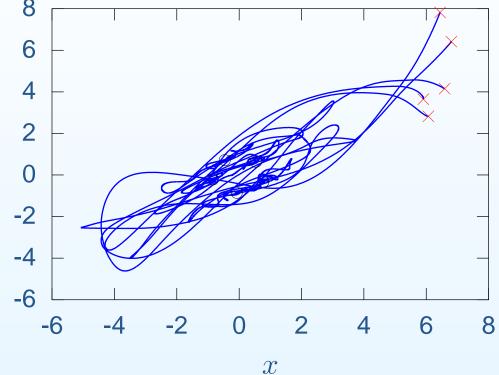
$$d_{ij} = \begin{cases} 1, & |i-j| = 1\\ \frac{\sin\left(\frac{2\pi}{N+1}\right)}{\sin\left(\frac{\pi}{N+1}\right)}, & |i-j| = 2 \end{cases} \text{ and } r_i = \frac{1}{2\sin\frac{\pi}{N}}.$$

• Take the control law to be u =

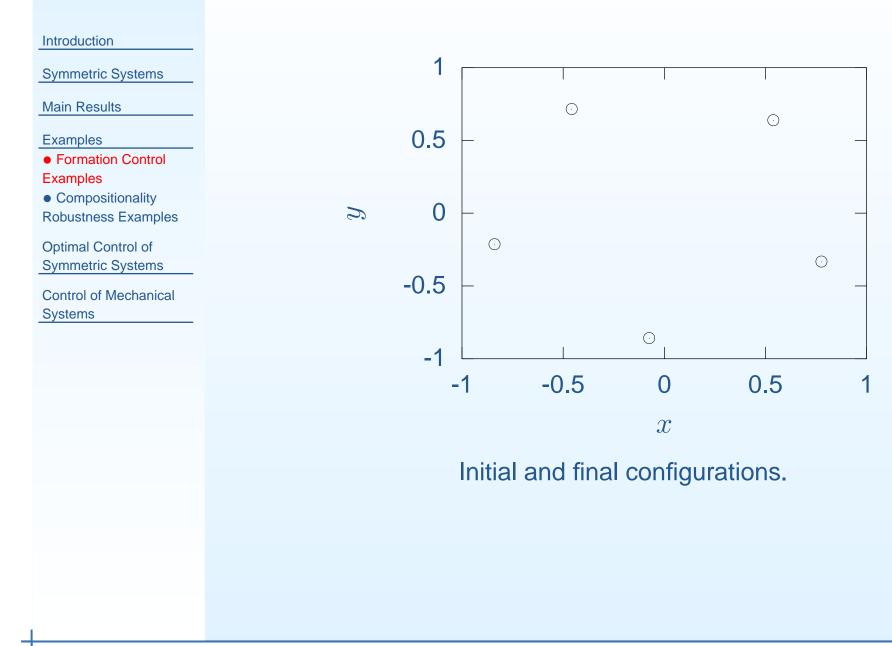
$$-\sum_{j} \left[\frac{\frac{\left(\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}-d_{ij}\right)}{\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}} \left(x_i-x_j\right)}{\left(\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}-d_{ij}\right)} \left(y_i-x_j\right)} -k_d \begin{bmatrix} \dot{x}_i \\ \dot{y}_i \end{bmatrix} - \begin{bmatrix} \frac{\sqrt{x_i^2+y_i^2}-r_i}{\sqrt{x_i^2+y_i^2}-r_i} x_i \\ \frac{\sqrt{x_i^2+y_i^2}-r_i}{\sqrt{x_i^2+y_i^2}-r_i} y_i \end{bmatrix}$$

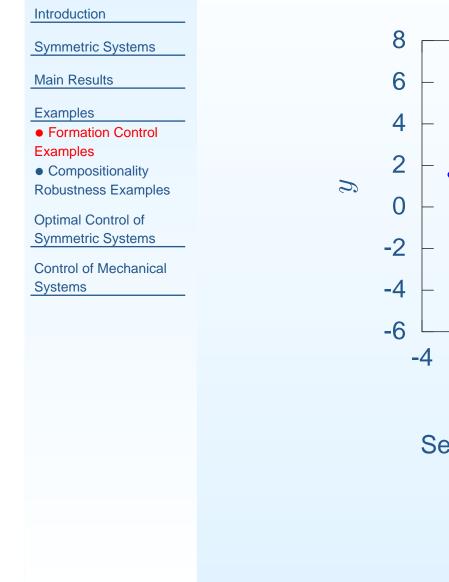
University of Notre Dame

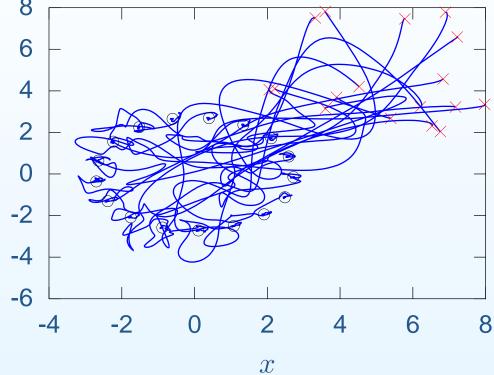




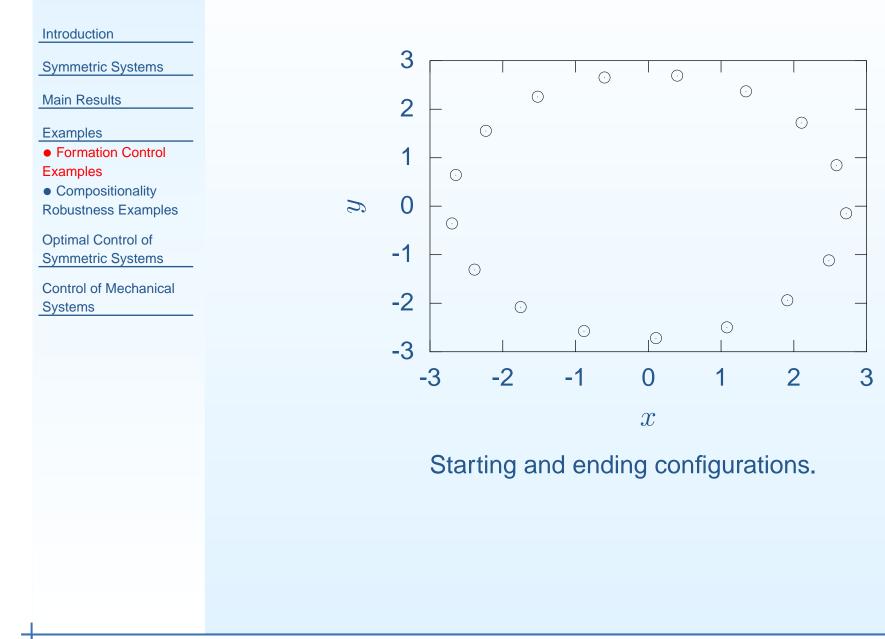
Five robot stable formation control.



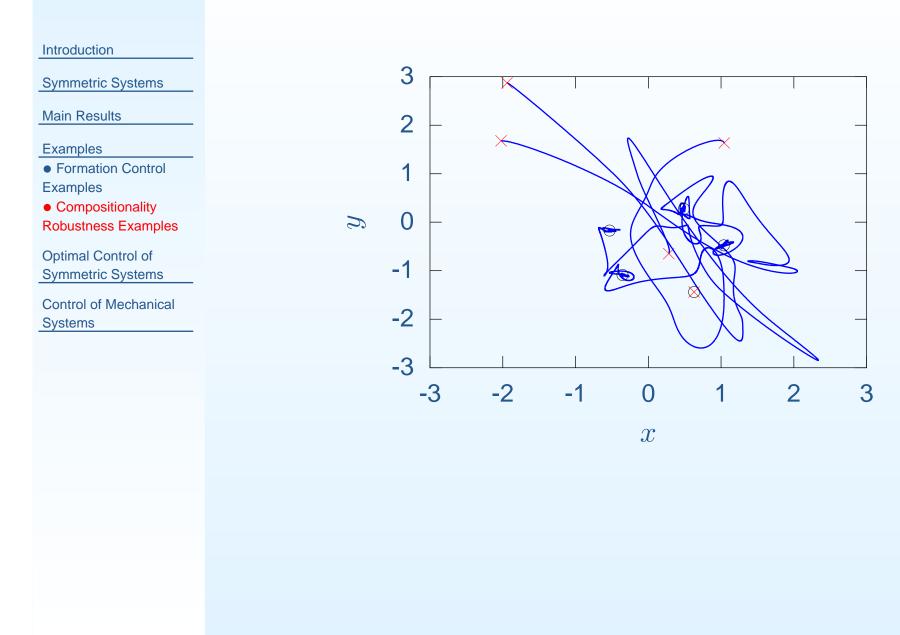




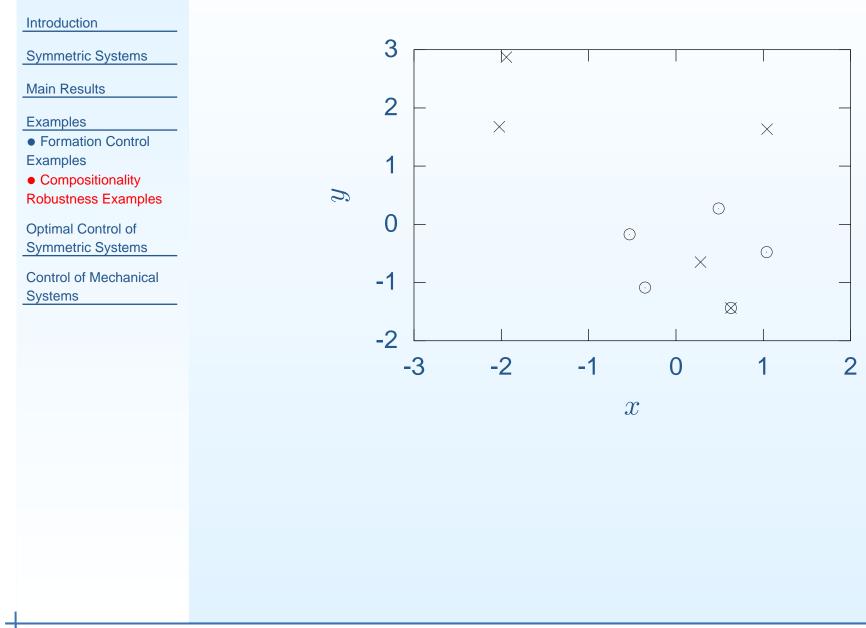
Seventeen-agent formation control.



Compositionality Robustness Examples



Compositionality Robustness Examples



Introduction

Symmetric Systems

Main Results

Examples

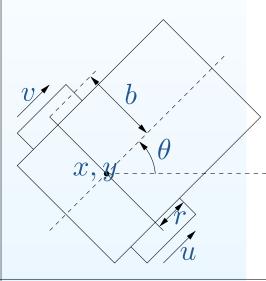
Optimal Control of Symmetric Systems

• Optimal Control of Symmetric Systems

Control of Mechanical Systems

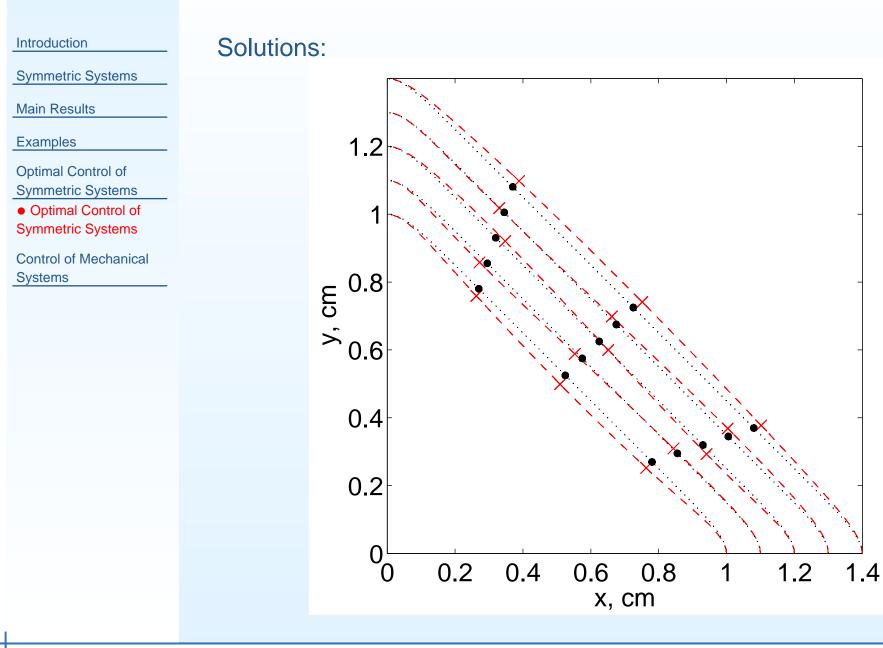
We are investigating the effect of approximate symmetries and symmetry-breaking by looking at optimal formation control. Minimize control effort and deviation from y desired formation

$$J = \int_0^{t_f} \left[\frac{1}{2} \sum_{i=1}^n u_i^2 + v_i^2 + \sum_{i=1}^n \left[\lambda_{x_i} \left(\dot{x_i} - \frac{r}{2} \cos \theta_i (u_i + v_i) + \lambda_{y_i} \left(\dot{y_i} - \frac{r}{2} \sin \theta_i (u_i + v_i) \right) + \lambda_{\theta_i} \left(\dot{\theta_i} - \frac{r}{2b} (u_i - v_i) \right) \right] + k \sum_{i=1}^{n-1} (d_{i,i+1} - \tilde{d})^2 dt$$



Consider $k \in [0, +\infty)$.

Bill Goodwine – 16 / 25



University of Notre Dame

Introduction

Solutions:

Symmetric Systems

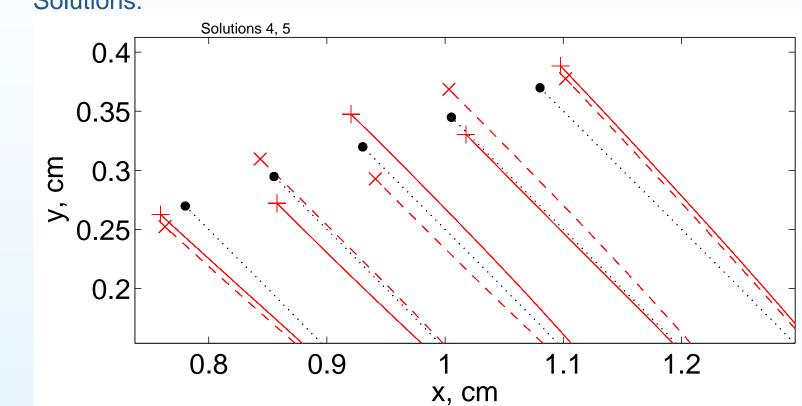
Main Results

Examples

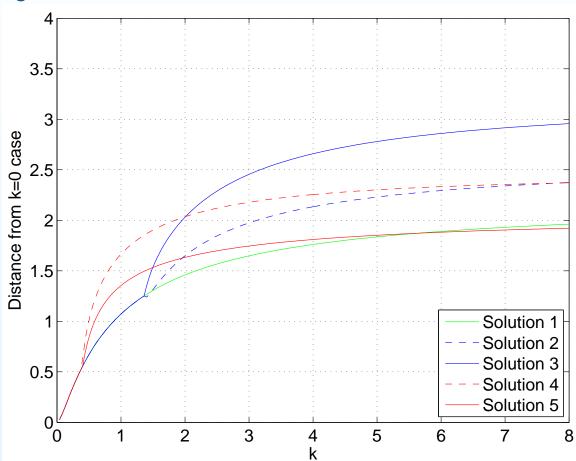
Optimal Control of Symmetric Systems

• Optimal Control of Symmetric Systems

Control of Mechanical Systems



Introduction **Bifurcating solutions:** Symmetric Systems Main Results 3.5 Examples **Optimal Control of** 3 Symmetric Systems Distance from k=0 case • Optimal Control of Symmetric Systems 2.5 Control of Mechanical **Systems** 2 1.5 0.5 0 0



Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of

Symmetric Systems
 Optimal Control of

Symmetric Systems

```
Control of Mechanical 
Systems
```

Main Results:

- Existence of multiple solutions
 - Limiting cases: k = 0 and $k \to \infty$.
 - Characterization of bifurcations.
- For holonomic system: solutions *and* bifurcations must be symmetric [5, 6].
- For nonholonomic system: symmetry is broken by agent itself
 - Bifurcations have small deviations
 - On the order of the wheelbase vs. path length
 - Further investigation: to give insight into full range of approximate systems.

Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of Symmetric Systems

Control of Mechanical Systems

• Control of *Mechanical* Systems

• Mechanical System Velocity Decomposition

• Control of *Mechanical* Systems

- Control of *Mechanical* Systems
- References

• Control + Mechanical = Cyber + Physical

• Instead of generic

$$\dot{x} = f(x) + g(x)u$$

consider the case where the vector fields *came from* a first principle, i.e., Lagrange's equations.

For $\Sigma = (M, \mathbb{G}, \{Y_1, \dots, Y_m\}, U)$ the equations of motion are

$$\dot{x}^{i} = v^{i}$$
$$\dot{v}^{i} = -\Gamma^{i}_{jk}v^{j}v^{k} + u^{a}Y^{i}_{a}.$$

- Very difficult open questions concerning control away from equilibrium points. E.g., only sufficient conditions for controllability.
- Approach: decompose velocities into actuated and unactuated degrees of freedom and study the coupling between them.

Mechanical System Velocity Decomposition

Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of

Symmetric Systems

Control of Mechanical Systems

- Control of *Mechanical* Systems
- Mechanical System
 Velocity Decomposition

• Control of *Mechanical* Systems

 Control of *Mechanical* Systems

References

• Decompose the velocity curve, $\dot{\gamma}(t)$ of Σ into

 $\dot{\gamma}(t) = w^a(t) X_a\left(\gamma(t)\right) + s^b X_b^{\perp}\left(\gamma(t)\right).$

From Lagrange's equations, it follows that

$$\dot{s}^b(t) = -\hat{\Gamma}^b_{ap}w^a w^p - 2\hat{\Gamma}^b_{ar}w^a s^r - \hat{\gamma}^b_{rk}s^r s^k.$$

- Direct control over the ws, therefore the vector-valued quadratic form $\hat{\Gamma}^b_{ap} w^a w^p$ plays a key role in control.
 - If it is indefinite, can both increase and decrease *s*, therefore can control all velocities.
 - If positive (negative) definite with other forms zero, can only increase (decrease) *s* (roller-racer).

Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of

Symmetric Systems

Control of Mechanical Systems

• Control of *Mechanical* Systems

• Mechanical System Velocity Decomposition

 Control of Mechanical Systems

- Control of *Mechanical* Systems
- References

Main results:

- Stopping (analysis at non-zero velocity) and stopping *algorithms*.
- Strongest algorithms for underactuated by one.
 - Controllability computational simplicity.
- Focus is on *coupling dynamics* between actuated and unactuated degrees of freedom.
- Natural extension to system integration and coupling between components.
- References: [7, 15, 16, 17] and related work: [1, 3, 2, 20, 8, 21].

Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of

Symmetric Systems

Control of Mechanical Systems

• Control of *Mechanical* Systems

• Mechanical System Velocity Decomposition

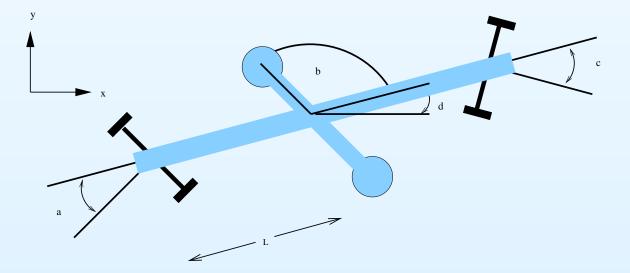
 Control of *Mechanical* Systems

 Control of *Mechanical* Systems

• References

Main results:

- Stopping (analysis at non-zero velocity) and stopping *algorithms*.
- Strongest algorithms for underactuated by one.
 - Controllability computational simplicity.
 - Focus is on *coupling dynamics* between actuated and unactuated degrees of freedom.
- Natural extension to system integration and coupling between components.
 - References: [7, 15, 16, 17] and related work: [1, 3, 2, 20, 8, 21].



Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of

Symmetric Systems

Control of Mechanical Systems

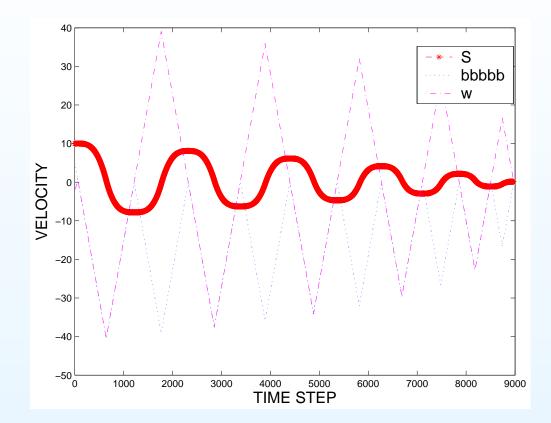
• Control of *Mechanical* Systems

• Mechanical System Velocity Decomposition

• Control of *Mechanical* Systems

• Control of *Mechanical* Systems

• References



References

Introduction

Symmetric Systems

Main Results

Examples

Optimal Control of

Symmetric Systems

Control of Mechanical Systems

• Control of *Mechanical* Systems

• Mechanical System Velocity Decomposition

 Control of *Mechanical* Systems

 Control of *Mechanical* Systems

University of Notre Dame

References

- F. Bullo, J. Cortes, A. Lewis, and S. Martinez. Vector-valued quadratic forms in control theory. In V. Blondel and A. Megretski, editors, *Sixty Open Problems in Mathematical Systems and Control Theory*, pages 315–320. Princeton University Press, 2004.
- [2] F. Bullo and A. Lewis. Geometric Control of Mechanical Systems. Springer Science+Business Media, New York, 2005.
- [3] F. Bullo and A. Lewis. Low-order controllability and kinematic reductions for affine connection control systems. *SIAM Journal on Control and Optimization*, 44(3):885–908, 2005.
- [4] Raffaello DÁndrea and Geir E. Dullerud. Distributed control design for spatially interconnected systems. *IEEE Transactions on Automatic Control*, 48(9):1478–1495, September 2003.
- [5] Baoyang Deng, Mihir Sen, and Bill Goodwine. Bifurcations and symmetries of optimal solutions for distributed robotic systems. In *Proceedings of the 2009 American Control Conference*, 2009.
- [6] Baoyang Deng, A.K. Valenzuela., and Bill Goodwine. Bifurcations of optimal solutions for coordinated robotic systems: Numerical and homotopy methods. In *Proceedings of the 2010 IEEE International Conference on Robotics and Automation*, pages 4475 – 4480, 2010.
- [7] B. Goodwine and J.Nightingale. The effect of dynamic singularities on robotic control and design. In *Proceedings of the* 2010 IEEE International Conference on Robotics and Automation, 2010.
- [8] A. Lewis, J.P. Ostrowski, R. Murray, and J. Burdick. Nonholonomic mechanics and locomotion: the snakeboard example. In *Proceedings of the 1994 IEEE International Conference on Robotics and Automation*, pages 2391–2400, 1994.
- [9] M. Brett McMickell and Bill Goodwine. Reductionand controllability of symmetric distributed systems with robotic applications. In *International Conference on Intelligent Robotics and Systems*, volume 3, pages 1232–1236. IEEE/RSJ, October 2001.

0] M. Brett McMickell and Bill Goodwine. Reduction and controllability of robotic systems with drift. In Procoodings of the 2002 IEEE International Conference on Robotics and Automation, May 2002. Bill Goodwine – 25 / 25