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• Overall goal: results for system integration through
compositionality.

• Compositionality: system-level properties can be computed from
local properties of components

◦ System-level properties preserved when expanding system.

• Initial focus: invariant properties for symmetric systems.
• Emphasis on general results, not limited to specific system

dynamics.
• Initial results: symmetric systems and stability.
• These results are Lyapunov-based, so the natural extension is to

passivity.
• Also working toward use of approximate symmetries.
• [9, 12, 10, 11, 14, 13, 4, 19]
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• Nonlinear Symmetric Systems and Compositionality
• Nonlinear Compositional Stability Results (V -based)

◦ stability for “growing” systems
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Consider a basic building block element :

x

u

w+

w−

v+

v−

where

• x is the state vector;
• u is the vector of control inputs;
• w± are the outputs; and,
• v± are the coupling inputs.

Connecting the inputs to the outputs gives
xx x x x x

uu u u u u

w+w+w+w+w+w+

w−w− w− w− w− w−

v+v+ v+ v+ v+ v+

v−v−v−v−v−v−
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Systems can be built with various topologies:
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Systems can be built with various topologies:
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• Represent connectedness
with generators,
{s1, . . . , sn} with
g2 = sig1.

• Cayley Graph:

◦ nodes = components
◦ edges = communication

• Equivalent connections for
two systems if they have the
same generators.

• Example:
S = {−2,−1, 1, 2}.

• Each component:

ẋi = fi(x) + gi(x)u

ws
i (t) = ws

i (xi(t)).

0

1

2

3

N

w1
0, v

−1

0
, w1

1, v
−1

1

w2
0, v

−2

0
, w

−2

2
, v2

2

w
−2

0
, v2

0 , w
2
−2, v

−2

−2

w
−1

0
, v1

0 , w
1
−1, v

−1

−1

w2
1, v

−2

1
, w

−2

3
, v2

3

• Periodic interconnections:

vsg (t) = ws
s−1g

(

xs−1g(t)
)

ws
g (t) = vssg (xg(t))
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A symmetric system has components with identical dynamics:
fg1(x) = fg2(x), gg1,j(x) = gg2,j(x), w

s
s−1g1

(x) = ws
s−1g2

(x)
and identical control laws

ug1,j

(

x1(t), w
s1

s−1

1
g1
(x2(t)), . . . , w

s|X|

s−1

|X|
g1
(x|X|+1(t))

)

=

ug2,j

(

x1(t), w
s1

s−1

1
g2
(x2(t)), . . . , w

s|X|

s−1

|X|
g2
(x|X|+1(t))

)

for all g1 ∈ G1, g2 ∈ G2, s ∈ X , x ∈ R
n,

(

x1, x2, . . . , x|X|+1

)

∈ R
n ×R

n × · · · ×R
n and j ∈ {1, . . . ,m}

where m = mg1 = mg2 .

Two systems are equivalent if they are both symmetric with equal
components and the same generators.
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• Stability: if a symmetric distributed system is stable, so is any
equivalent symmetric system, so can “grow” or “shrink.”

◦ Growing: useful for analysis/design on a small system with
guaranteed invariance for larger equivalent systems

◦ Shrinking: reconfigurable robustness

• Robustness: stability in the sense of Lyapunov is guaranteed
even when components fail without any reconfiguration
necessary.

• Requires a symmetric Lyapunov function: V =
∑

i∈G Vi where

Vg1

(

x1, w
s1

s−1

1
g1
(x2), . . . , w

s|X|

s−1

|X|
g1
(x|X|+1)

)

=

Vg2

(

x1, w
s1

s−1

1
g2
(x2), . . . , w

s|X|

s−1

|X|
g2
(x|X|+1)

)

for all g1, g2 ∈ G and
(

x1, x2, . . . , x|X|+1

)

∈ R
n × · · · × R

n.
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• From [18] second-order mechanical system agents:

d

dt
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
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ẋi
yi
ẏi
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• Goal= regular (N + 1)-polygon centered at the origin, hence

dij =







1, |i− j| = 1
sin( 2π

N+1)
sin( π

N+1)
, |i− j| = 2

and ri =
1

2 sin π
N

.

• Take the control law to be u =

−
∑

j









(√
(xi−xj)2+(yi−yj)2−dij

)

√
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We are investigating the effect of approximate symmetries and
symmetry-breaking by looking at optimal formation control.
Minimize control effort and deviation from
desired formation

J =

∫ tf

0

[

1

2

n
∑

i=1

u2i + v2i

+
n
∑

i=1

[

λxi

(

ẋi −
r

2
cos θi(ui + vi)

)

+λyi

(

ẏi −
r

2
sin θi(ui + vi)

)

+ λθi

(

θ̇i −
r

2b
(ui − vi)

)]

+k

n−1
∑

i=1

(di,i+1 − d̃)2

]

dt

v

r

b

u

θ
x, y

y

Consider k ∈ [0,+∞) .
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Bifurcating solutions:
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Main Results:

• Existence of multiple solutions

◦ Limiting cases: k = 0 and k → ∞.
◦ Characterization of bifurcations.

• For holonomic system: solutions and bifurcations must be
symmetric [5, 6].

• For nonholonomic system: symmetry is broken by agent itself

◦ Bifurcations have small deviations
◦ On the order of the wheelbase vs. path length
◦ Further investigation: to give insight into full range of

approximate systems.
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• Control + Mechanical = Cyber + Physical
• Instead of generic

ẋ = f(x) + g(x)u

consider the case where the vector fields came from a first
principle, i.e., Lagrange’s equations.

• For Σ = (M,G, {Y1, . . . , Ym} , U) the equations of motion are

ẋi = vi

v̇i = −Γi
jkv

jvk + uaY i
a .

• Very difficult open questions concerning control away from
equilibrium points. E.g., only sufficient conditions for
controllability.

• Approach: decompose velocities into actuated and unactuated
degrees of freedom and study the coupling between them.
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• Decompose the velocity curve, γ̇(t) of Σ into

γ̇(t) = wa(t)Xa (γ(t)) + sbX⊥
b (γ(t)) .

• From Lagrange’s equations, it follows that

ṡb(t) = −Γ̂b
apw

awp − 2Γ̂b
arw

asr − γ̂brks
rsk.

• Direct control over the ws, therefore the vector-valued quadratic
form Γ̂b

apw
awp plays a key role in control.

◦ If it is indefinite, can both increase and decrease s, therefore
can control all velocities.

◦ If positive (negative) definite with other forms zero, can only
increase (decrease) s (roller-racer).
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Main results:

• Stopping (analysis at non-zero velocity) and stopping algorithms.
• Strongest algorithms for underactuated by one.
• Controllability computational simplicity.
• Focus is on coupling dynamics between actuated and unactuated

degrees of freedom.
• Natural extension to system integration and coupling between

components.
• References: [7, 15, 16, 17] and related work: [1, 3, 2, 20, 8, 21].
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