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The ongoing research aims to
develop rules to study and methods
to coordinate a network of fully and
partially self-driving vehicles,
interacting with conventional
vehicles driven by people on a
complex road grid, so that overall
safety and efficiency of the ftraffic
system can be Iimproved. The
potential outcomes of the research
can add to the collective
understanding of more general
systems with hierarchical structures;
help create designs with minimal
computation and communication
delay, and provide mathematical
proofs for safety and reliability of a
class of systems that combine
physical, mechanical, and biological
components with purely
computational ones.

Researchers at the Control and
Intelligent Transportation Research
(CITR) Laboratory at The Ohio
State University and Cyber-Physical
Systems Laboratory (CPSLab) at
Arizona  State University are
collaborating to address a series of
vehicular-CPS problems, with
applications in the entire range of
Cyber-Physical Systems.
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CPS: Synergy: Collaborative Research: Collaborative Vehicular Systems
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Automatic Test Gase Generation

Motivated by our earlier efforts:
« “Autonomous Driving In  Dense,
Environments” (OSU, NSF Supported)
 “Model Exploration for Cyber-Physical Systems” (ASU,
NSF Supported)
Three main concerns:
1. Collaboration:
* Autonomous (semi-autonomous) and totally “human-
driven” in mixed-mode traffic.
« Subsets of vehicles making decision and exchanging
information securely.
* Objective: Safe and reliable traffic flow.
2. Scalability:
» Scalability through hierarchies
» Grouping CPS entities as teams, convoys, regions, etc.
3. Testability and Verifiability:
 CPS calculus as a modeling and verification tool to prove
safety conditions.

* Automated selection of test parameters and initial conditions
through optimization methods

Mixed  Traffic

* An experiment for basic forms of collaboration was performed
at OSU

« CACC + Lane Change
 Partial automation in mixed traffic
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Openingup agap in an
automated convoy for a new ﬂiup—
vehicle, followed by '
automated gap alignment and
human-controlled merge
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Given a vehicle platoon of n; vehicles and n, merging/leaving vehicles that request cooperation, ny,n, = 1, the
flexible platooning problem is to find a set of feasible maneuvers {n'} and control inputs {u'},i = 1, ...,ny + n,,
that minimize a given optimization index J

J‘(I‘)=llljll{u,}_{n,}J({.\‘i}.{lli}.{l]i}.f) (1-1)
st. lim || x'(£)—x"||=0

X (t+1) = f1(x'(t).u' ()
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where fi(-,) is the state equation of vehicle i. {X} denotes the reference states. X*.1{’.))"are the state
constraint, input constraint, and maneuver feasibility constraints, respectively.
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check control

two-layer cooperative controller

Require a (cooperative) control scheme that:

can properly utilize shared information from neighboring vehicles to achieve formation cooperation.
address input constraints, state constraints, and communication constraints that related to safety
accomplish requested flexible platooning tasks in a fast manner without violating safe spacing constraints

Communication
constraints

channel flexible consider constraints
reoccurrence rate configuration by design

distributed

Information exchange System constraints

non-iterative model predictive control (MPC)

Assume that i) each vehicle has communication connection with its neighbors;
ii) the overall communication graph has a spanning tree.

www.car-2-car.org

Problem Description

Given
*a set of Vehicles Under Test (VUT)

High fidelity models (complex dynamics)

Full control architecture (in contrast to specificcontrol algorithms).

Possibilities: o Black boxsystems

o Grayboxsystems (in case specific control modes must be targeted)

*a set of dummy actors

Static or movingactors

Simple dynamics or kinematics or non-physics based motion
*the environment

Parameterized road network
Compute
*the initial conditions and vehicle trajectories which lead to a behavior on the boundary between safe and
unsafe behavior

Framework Robustness Metric

S-TaLiRo Large TTC: Small

optimization engine, collision “risk”
stochastic sampler,
input generator
Initial conditions Robustness
’&Inpug measure
Robustness
evaluation
function

Collision at a
large relative

eIocity

Configuration

Simulation | Configuration | Simulation | Output trace
configuration engine

+ S-TalLiRo for initial state / input sampling
* Optimization goal: Minimize robustness value
+ User selected simulation engine

Collision at a small
relative velocity

Case Study - Demonstration of framework

Real-time Traffic Scene Perception
via Deep Learning

* An intelligent controller is built for an Unmanned Ground
Vehicle (UGV).

* The system is decomposed using a functional hierarchy.

A hybrid state controller is constructed based on this
decomposition.

« Latent (hidden) variables — generative models
* Supervised vs. Unsupervised Learning

* Trainingis time and work intensive 2> GPGPU

> Deep Belief Networks

Restricted Boltzmann Machines > Deep Boltzmann Machines
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Representation

Sotup and Implementation on TX1
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Interpretation

Reconstruction Classification

Profiling

Motion Control H
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Simulation Configuration:
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Longitudinal Position (7)
(The trajectory for the dummy vehicle — automatically generated)

 Two vehiclesundertest (platooning)
e One dummy vehicle
 Two-lane straight road

\/ e

Lateral Position ()
o

o

iy

(A front collision right after avoiding a side collision)
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(Improved sensor configuration)
(Non-robust scenario automatically created by our framework
under the new sensor configuration)

Test generation using Gradient Descent and
Multi-fidelity models
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Backtracking Process Algorithm
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Simple High
Problem: (approximate) / fidelity
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Finding an input signal which will Urange F F
minimize the worst-case performance of |

Low-discrepancy
input sampling

the system over a simulation of time T.
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For a list of references, please contact the Pls using the
contact information on the left.




