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— Control-level techniques
e Attack detection and
identification using redundant
sensing and model of the
system’s dynamics
e Attack-resilient control
architectures

— Code-level techniques
e Ensure that the control code is
correctly implemented and
integrated
* Preventing malicious code
injection into the controller

Goal: Ensure that the system maintains a degree of control even when
the system is under cyber and/or physical attack



Integrity Requirements for Resilient Duke

Cyber-Physical Systems Engineering
Challenges: 0 0
. . . . — Plant
* Existing security-aware control techniques
impose very restrictive systems assumptions —ui@) (+)5'
— No noise in the system State-based | [}, | Resilient
Feedback |€¢ State <
— No DoS attacks Controller Estimator
— Only a subset of sensors can be compromised —
* Very conservative requirements on data-integrity Detection <

Solutions:

e Attack-resilient state estimation in the presence of noise [CDC’15,CSM’17,TCNS’16]
— Formal robustness guarantees even for the computationally efficient convex-optimization
based estimator

e Control-aware intermittent integrity enforcement — e.g., using Message
Authentication Codes (MAC) [CDC’17,RTSS’17,EMSOFT’17/ACM TECS’17]

— Case studies: design of resilient automotive features over
e CAN bus, V2V/I —resilient & safe trajectory following with < 20% packets with MAC



Standard Architecture Under Consideration Duke
Can we afford security-related overhead? Engincering
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Standard Architecture Under Consideration Duke
ldea— Exploit physics to relax security overhead Engincering
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Security-Aware Scheduling in CPS
Co-design reduces security-related overhead
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Reachable regions for a trajectory tracking system
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Co-design framework
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* V. Lesi, I. Jovanov, and M. Pajic, “Security-Aware Scheduling of Embedded Control Tl —
? _/*'” Attack start P
Tasks”, Best Paper Award at EMSOFT 2017. S~ + “,,w:)
* V. Lesi, I. Jovanov, and M. Pajic, “Network Scheduling for Secure Cyber-Physical o - . = 0

Svstems”, RTSS 2017.
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