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What is Transactive Energy (TE)?

Transactive Energy Systems (TESs) involve “smart devices that communicate with the
energy market to make decisions on behalf of the consumer whether to pay higher energy
costs during times when power use peaks or delay energy use to pay less and alleviate
strain on the power grid” (Pacific Northwest National Laboratory 2020).

» Generally includes both real-time pricing and load management

» Grid reliability and demand management

* Integration of renewable and distributed energy sources

« Environmental benefits such as reduced greenhouse gas emissions

* Lower energy bills

* Reduce the need for investment in costly and often politically contentious high voltage power lines
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Operational Challenges with TE

« Sometimes TESs were not ready

« Hot water heater risk

* Vendor failures

« Security issues
 Userreadiness

* Need for education and greater customer service
* Recruitment difficulties
- Participation drop out rates

« Economic feasibility

» Time of use pricing may be better for smaller residential consumers
« Minimal reduction of residential consumption
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Why Modeling and Simulation of Transactive Energy
Systems (TES) in the Smart-Grid is challenging?

 Transactive Energy presents a highly complex “Cyber-Physical-Human-Economical
Problem”.

* multi-users (e.g., individual users, industries, power station operators, power market agents),

* multi-domain (e.g. analog transmissions & control, digital control, transients, thermal,...),

* multi-time-scales (e.g., long/medium/short term power generation planning Vs household consumption model),

* multi-time-resolution (e.g., fault-propagation and dynamics modeling Vs power market operations)

« multi-tier grid control & synchronization (e.g., local/edge control, sub-station level, micro-grid level, sub-station level),

* multi-pricing-methods (e.g., time-of-use pricing, local marginal pricing, incentives)

 Huge challenges for comprehensive modeling and simulation of TES:

* It is a multi-provider system with highly dynamic capacity — even consumers can be producers
- Demand is highly dynamic, providers have diff. views — can lead to “instability or chaotic behavior”

 Highly complex interdependent network — driven by highly unpredictable elements — weather, humans
(users, policies, security, trust, irrationality, politics,..), malicious agents & cyber attacks, ..
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Three Design Studios for TE modeling & simulation

What is a Design Studio?

Meta-programmable integration platforms
Domain-specific modeling and experimentation
Supports collaborative modeling (in real-time)
Web-accessible

Provide a library of reusable tools and services
Supports cloud execution of variations of experiments

Note: All design studios require password and are hosted on CPS-VO (http://cps-vo.orq)

1. Cyber-Physical Systems Wind Tunnel for Transactive Energy (CPSWTTE)
«  http://cps-vo.org/group/cpswite

2. GridLAB-D Modeling and Simulation (GDSIM)
« http://cps-vo.org/group/gridlabd

3. Testbed for Simulation-Based Evaluation of Resilience (TeSER)
«  http://lablet.webgme.org
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Design Studio #1:
Cyber-Physical Systems Wind Tunnel for
Transactive Energy (CPSWTTE)
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Could we use a system-of-systems design for analyzing
TES as a whole by integrating many simulations that
model diff. TE concerns?

Power Grid Modeling Concerns:
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Fundamental issues to address:

Stakeholder confidence in TE approaches only via comprehensive grid-scale
“multi-faceted” modeling and simulation

Integrated power-grid and comm. network (real/simulated/emulated)

“Integrated analysis” with multiple facets, e.g. analyzing dynamic impacts of
supply and demand with transients and cascading faults

Variation in one facet usually leads to cascading (event disastrous) failures

Fundamental system design questions to answer:

How to:

Address the heterogeneity of TE issues and participating players?
Address different operational policies and requirements?
Ensure reliability and security of the grid?

Generate insights into the behavior of TE approaches and gain confidence in
control mechanisms for smart-grids?

Design policies, standards, & controls for max. resource utilization?
Provide resilience against cyber vulnerabilities?
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Integrating Heterogeneous Simulations

Smart Grid Communication Network Controller & Dynamics Acausal model libraries, DAEs Real-time Components
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" FU{L i = Hardware
= ﬁb’mi 1‘ = [t Systems w/
Simulink/ ';V'Ode“,f”‘“ B Hw or s/
Stateflow | [Y|i'¢" Humans
* Modeling languages are different « Simulators have different timing models
« Semantics is different for continuous time, discrete | | « Execution needs to be coordinated
time, and discrete event « Data needs to be shared
« Simulated systems are interacting but modeling  Different time-scale and resolution
languages do not have constructs to express them * Logical time vs. real time
* No support for specifying experiments  Different simulation engines

« How can we integrate the simulated heterogeneous systems (system domains and components)?
« How can we integrate the heterogeneous simulation engines (software applications)?

« How can we simulation in-the-loop the real-time hardware, systems, and humans?

« How can we rapidly synthesize and deploy integrated simulations?

« How can we analyze operations at the System-of-Systems (SoS) level?
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Traditional Approaches Vs IEEE HLA Standard

FMI-Based
Co-Simulations

Distributed

Messaging
Oriented

Approaches

HLA-Based
Federated
Co-Simulations

FMI for Model Exchange (ME): FMU-MI

1T 3y FMU

"o WSS e |

FMI for Co-Simulation (CS): FMU-CS

* Standardizes dynamical model to solver int. by defining a set of ‘C’ functions

* Focusses on re-use with IP-protection

* Leaves it to system designer: (a) “Master Algorithm” implementation for co-ordination and
control of FMUs (b) Distribution Object Mgmt. (c) Time Mgmt.

* Mainly use sockets/IPC for comm. & coord. b/n agents (e.g. ICE, ZeroMQ, Mosaik, ...)
* Time sync. is adhoc; Limited persistence + QoS support
* Brokered Arch.: Single point of failure + Performance bottlenecks

* Brokerless Arch.: Inflexible for dynamic joins/resigns
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HLA - Run-Time Infrastructure (RTI)

* Flexible data model supporting all different types of simulations (e.g., time-synchronized,
real-time, hardware/human in the loop, etc.)

* Well-defined rules, interfaces, APls with clear semantics
* Flexible architecture for customization and extensibility

* Standardized way supporting the essential co-simulation building blocks:
— Time Management: Coordinated time-advancement/-synchronization, Diff. time-resolutions/time-scales,..
— Distributed Object Management: Shared data types/methods, Data delivery/dispatch/security,..
— Distributed Simulation Management: Coord & control of distributed co-simulation (systematic orchestration)
— Real-Time Components Integration: Real-world entities plugged into System-of-Systems simulation
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Cyber-Physical Systems Wind Tunnel (CPSWT):
A Model-based System and Tool Integration Approach
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[High-Level Architecture (HLA) Run-Time Infrastructure (RTI): Portico (open source),
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CPSWTTE Design Studio for Collaborative

TE Modeling and Simulation

Business Grid Safety & Reliability
Regulation Modeler Evaluation Modeler
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for Experimentation, Results, &
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Results
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Power exchange among micro-grids?
Business models & market structures?

Pricing models?
Market clearing methods?

Analysis of TE systems require collaborative modeling
and experimentation environments because TE design
and implementation involves a large number of
stakeholders!

CPSWTTE Features:

Multi-Model Simulation Integration

Model-Based Rapid Synthesis of Heterogeneous
Simulations

HLA-Based Synchronization, Communication, and
Coordination

Web-Based Tools for Modeling and Simulation as
a Service

Collaborative Modeling and Experiment Design
Experiments Management and Control
Web-Accessible, Secure, Private, Cloud-Hosted
Experimentation Environment

o0 O O 00
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CPSWT-TE Platform Architecture
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Design Studio Example: A Muiti-Model Integrated Simulation

CPSWT-TE Platform
Tools & Methods:

*Build system

*Repositories
*Change tracking
*Authentication
*Analysis tools
*Error handling

*Experiment tools

e Y oele et *Monitoring & control

=T mmmEw LI

*.Gridlab-D """O I\meT -+ Hmun *Cloud deployment

Distribution Communication

Network Platform URL.:
https://cps-vo.org/group/CPSWTTE
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Design Studio #2:
GDSim: GridLAB-D Modeling & Simulation for
Transactive Energy
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GDSIim

- Pure GridLAB-D simulation (no integration with other simulators)
- Power-grid distribution system simulation + Attacks on markets
- Supports market attacks for analyzing TE approaches

- Multi-user real-time collaboration over models and experiments
- Avalilable at:

Modeling and Simulation Workflow:

Optional \ aaaaaaaasa. | pmmoozom--- ,

=xternal Inputs; Power-grid || et P?E?cr;ﬂ
- NI =M Modeling =¥ e = Agack |
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l‘:::::;"l‘:::::\'l l
iRecorder‘. EWeatheF: |
Files ::_Files i ) Analyze Experiment Global

""""""" Expt. — Start& 4= Parameter

Results Monitor Config
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https://cps-vo.org/group/gridlabd

GDSim: Implementation Architecture
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Simulation of Cyber-Physical Energy Systems (MSCPES), pp. 1-6. IEEE, 2019.

Time
Neema, Himanshu, Harsh Vardhan, Carlos Barreto, and Xenofon Koutsoukos. "Web-based platform for evaluation of resilient and transactive smart-grids." In 2019 7th Workshop on Modeling and

Example: Creating Demand Peaks through Market Attacks
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GDSim Design Studio: Summary

« Power-grids are a complex system involving many different components
* Increased connectivity and DERs have increased grid’s vulnerability to attacks
« A Web-based platform with the following advantages:

* Web-accessible

« Graphical modeling environment

* Real-time collaboration

« Transactive energy simulations

« Experimentation with market attacks
« Several case study models

« Library of high-level models
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Design Studio #3:
TeSER: Testbed for Simulation-Based Evaluation
of Resilience
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5. TeSER: Testbed for Simulation-based Evaluation of Resilience
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Distributed Energy Resources (DER)
Integration makes grid controls
highly dynamic and distributed

Prosumers = Producers +
Consumers

Dynamic power pricing adds to
complexity

Traditional load forecasting becomes
highly challenging

Deep-learning based predictors
using smart meter data is more
manageable

PROBLEM: These neural network based load forecasters are vulnerable to stealthy adversarial attacks!
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TeSER Testbed Architecture

WEB BROWSERS

(b GRIDLAB-D WEBGME DEEPFORGE
m!'Griaum-n T orrensions | | “ope | | EXTENSIONS . F
TensorFlow

WEB SERVER
MODEL
DATABASE

Web-accessible, Collaborative, Cloud-Supported

......

OEPFORGE (" A

*‘ MODELS
CLOUD COMPUTING

GRIDLAB-D
MODELS

TeSER Testbed (requires password): https://lablet.webgme.org

Built using four “open-source” technologies:

- WebGME (Web-based Generic Modeling Environment):
Meta-modeling environment for creating rich domain-
specific modeling languages

*  GridLAB-D: Power grid distribution systems steady-
state simulator

«  DeepForge: Deep Learning Framework
MongoDB: Object-oriented database

Integrated cloud computation platform for executing
large-scale experiments

Integrated support for modeling various Tensorflow/
Keras based machine learning architectures

Supports storage of experiment results and
presenting as digestible plots

Full versioning and change-tracking of all models

Full record of executed ML pipelines: iterations,
console logs, etc.
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Deep Learning Framework
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Evaluating Adversarial Attack Impact on Grid Forecasters
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Neema, Himanshu, Peter Volgyesi, Xenofon Koutsoukos, Thomas Roth, Cuong Nguyen. "Online Testbed for Evaluating Vulnerability of Deep Learning Based Power Grid Load Forecasters." In 2020
8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), IEEE 2020.
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Ex 1: Comparing Deep Learning Based Load Predictors

Medium scale feeder in
GridLAB-D (109 smart meters)

Pipeline model for
training predictors
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Ex2: Load Predictions under Stealthy Adversarial Attacks

 Medium scale feeder in GridLAB-D * LSTM load forecast predictor *  Threat constraints: 30% of sensors
(109 smart meters) - Auto-encoder anomaly detector compromised, each mog:hﬂed no more th.an 20%
B « Assume worst-case white-box attacks (i.e., full
. . . road Prediefion knowledge of predictor and anomaly detector)
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Ex2: Experiment Results

Four adversarial attack settings:

Fast Gradient Sign Method (FGSM): Single step attack to
maximize the prediction deviation from the original predictor

Iterative GSM: Iterative attack to maximize the prediction
deviation from the original predictor

Directed GSM (reverse = 1): Iterative attack to minimize the
predicted values

Directed GSM (reverse = —1): Iterative attack to maximize
the predicted values

Confusion matrix

True label

-
A

~

Predicted label

Confusion matrix

True label

A

0.02

0.02

~

Predicted label

Prediction Results (MSE) with Different Prediction Deployment Settings

Attack/Detection Settings Original/NoAttack | Adversarial/NoDetect | Original/StaticDetect | Adversarial/StaticDetect
Fast-GSM (rate=0.3,step_len=0.2) 0.1255 0.5375 0.1287 0.5322
[terative-GSM (rate=0.3, step_
len=0.01,step_num=20) 0.1255 0.7801 0.1287 0.7606
l?lrectedGSM (l'ate=Q.3, step_len=0.01 01255 04785 01287 04913
,step_num=20), reverse=1)

PlrectedGSM (l:atez.(‘).3, step_len=0.01 0.1255 1025 01287 09899
,step_num=20, reverse=-1)
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