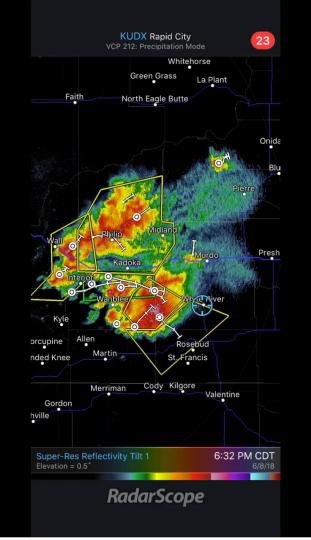
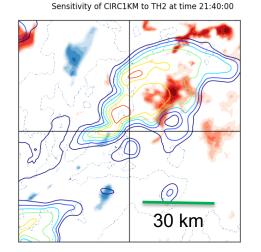

### **Targeted Observation of Severe Local Storms Using Aerial Robots**

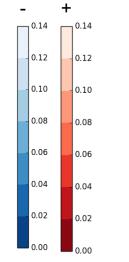


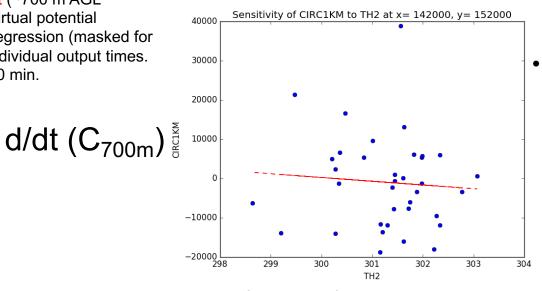



Roger Laurence, University of Colorado Eric Frew and Brian Argrow, University of Colorado Adam Houston, University of Nebraska Chris Weiss, Texas Tech University Volkan Isler, University of Minnesota Dezhen Song, Texas A&M University



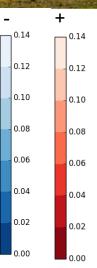




## Severe Local Storm Intercepts




## **Targeting with Numerical Ensemble Sensitivity Analysis**

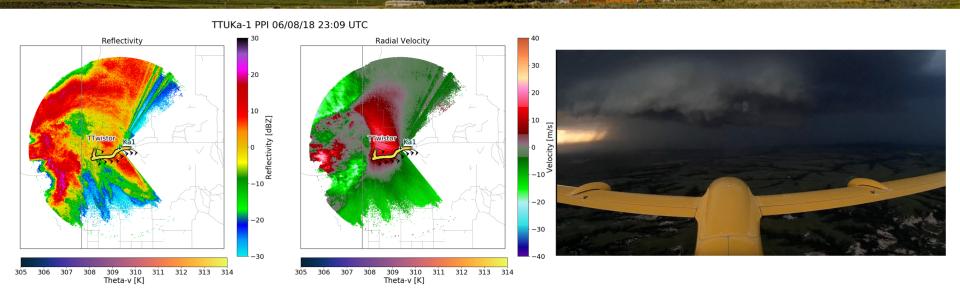



P-value of d/dt (~700 m AGL circulation) / virtual potential temperature regression (masked for  $\alpha$  > 0.14) at individual output times. Lead time = 20 min.





Sensitivity of CIRC1KM to TH2 at time 21:40:00 30 km


Running composite sensitivity

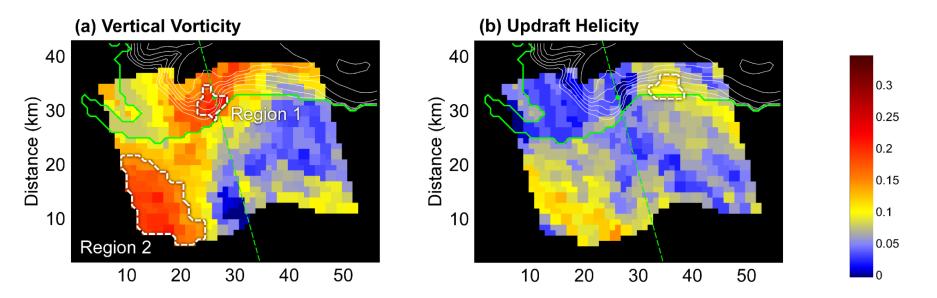


**High-resolution** numerical weather model forecasts of past events used to identify key locations for UAS to sample to improve forecasts of tornadoes

Scatterplot of composite regression relationship at position "X"

## **Coordinated Severe Storm Intercepts with UAS and TTUKa Mobile Doppler Radar**




TTUKa 0.5 deg radar (left) reflectivity (dBZ) and (center) radial velocity (m s<sup>-1</sup>), valid at 2309 UTC on 8 Jun 2018. Track of TTwistor is overlaid with flight-level winds and virtual potential temperature (shaded, K, scale at bottom); (right) Photo from the TTwistor aircraft during the deployment.

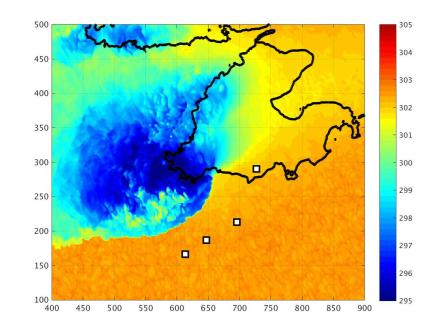
- Successful intercept of a supercell thunderstorm in South Dakota on 8 Jun 2018
- UAS flight paths guided by targeting information gleaned from (offline) numerical model analysis
- TTwistor gathers data on key 3-D gradients in air density relevant to developing tornadoes

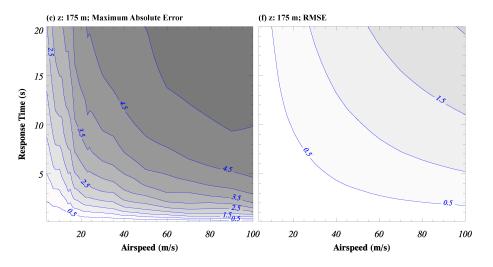
#### Severe-storm Targeted Observation and Robotic Monitoring (STORM)

#### **Storm-Scale Ensemble Sensitivity Analysis**

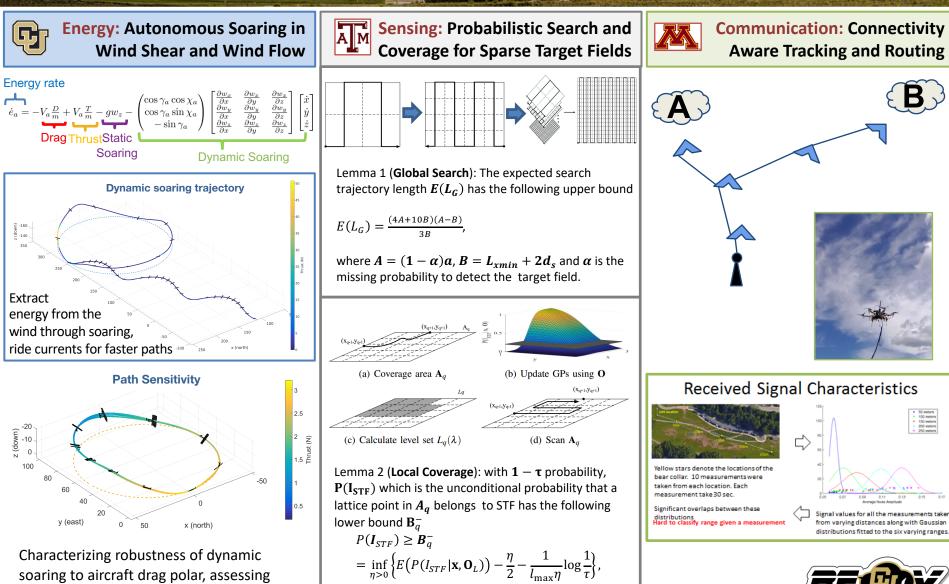
- Storm-scale ESA experiments have been completed (Limpert and Houston 2018)
- This work features the following innovations:
  - -No prior work has implemented ESA on the storm scale
  - -Sensitivity is evaluated based on multivariate and not single-variate statistics
- Coherent regions of sensitivity highlight areas where targeted observations may have value
- Inherent non-linearity and auto-correlation produce large uncertainties




#### Severe-storm Targeted Observation and Robotic Monitoring (STORM)


#### **Observing System Simulation Experiments**

- The nature run (from which synthetic observations will be derived) has been completed.
- The aircraft model (for use in the nature run) has been developed and tested.
- The data assimilation component will capitalize on a nascent collaboration with the NOAA National Severe Storms Laboratory.


#### UAS Airspeed and Sensor Response Effect on Sampled Data

- In this work we investigated the relationship between sensor response, airspeed, and the time scales over which atmospheric boundary layer phenomena (i.e., thermals and density currents) evolve (**Houston and Keeler 2018**).
- The results offer specific guidance for UAS users who aim to observe common phenomena in the PBL.
- This grant supported the development of atmospheric simulations utilized in this study.





## **Co-Optimization of Energy, Sensing, and Communication for Targeted Observation**



Where  $\tau \in (0,1)$  is a chosen small number.

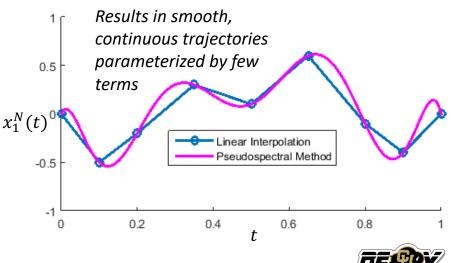
limits of feedback to recover performance

# **Improved Trajectory Optimization Performance for Dynamic Soaring**

#### Differential flatness

#### Pseudospectral methods

Given a nonlinear system  $\dot{x}(t) = f(x(t), u(t)), x(t_0) = x_0, x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$ There may exist a **flat output**  $y(t) \in \mathbb{R}^m$  where  $y(t) = \psi \left( x(t), u(t), \dot{u}(t), \ddot{u}(t), ..., u^{(\alpha)}(t) \right)$  $\left( x(t), u(t) \right) = \varphi \left( y(t), \dot{y}(t), \ddot{y}(t), ..., y^{(\beta)}(t) \right)$ 


 $J(x,u) \qquad \psi \qquad J(y)$ 

Andrew B. Mills, Daniel Kim, and Eric W. Frew. "Energy-Aware Aircraft Trajectory Generation Using Pseudospectral Methods with Differential Flatness". *1st IEEE Conference on Control Technology and Applications*. Kohala Coast, Hawaii, Aug. 27-30, 2017. Discretize x(t) and u(t) using a **polynomial discretization**:

$$x(t) \approx x^{N}(t) = \sum_{\substack{i=0\\N}}^{N} x_{i}\phi_{i}(t)$$
$$u(t) \approx u^{N}(t) = \sum_{\substack{i=0\\N}}^{N} u_{i}\phi_{i}(t)$$

λT


where  $\phi_i(t)$  is the  $i^{th}$  Lagrange interpolating polynomial of order N.



## **Energy Aware Planning**

- Given a (large) coverage area with a charging station, and a bound on maximum distance traveled,
- what is the quickest way to cover the area
- (including recharging stops)?

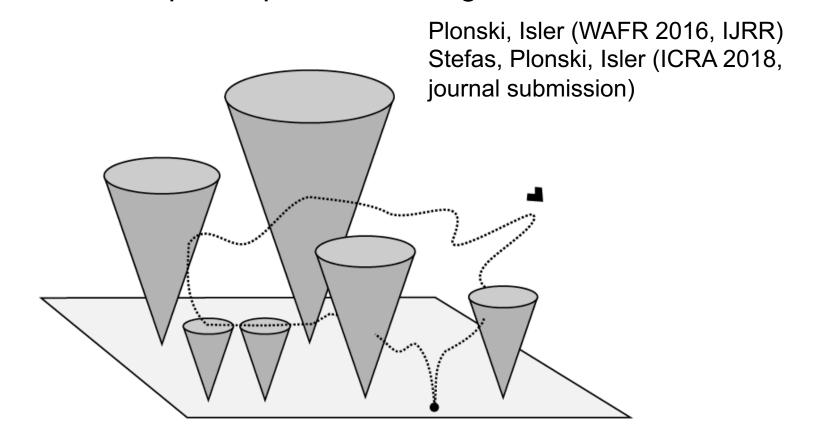




Actual UAV paths, Total area: 58800m2

UNIVERSITY OF MINNESOTA

Driven to Discover


Wei, Isler, ICRA'18, ICAPS'28, IJRR submission

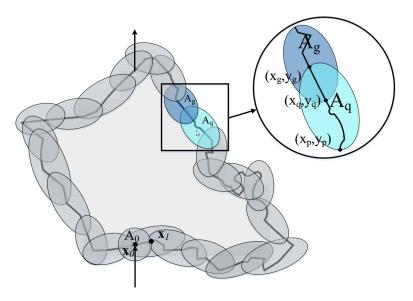
## Sensing Aware Planning

UNIVERSITY OF MINNESOTA

Driven to Discover

### Cone height $\Rightarrow$ desired resolution Cone angle $\Rightarrow$ camera FOV What is the optimal path to visit a given set of cones?




## Boundary Traversing for Storm Fields as Unknown Target Fields



#### COMPUTER SCIENCE & ENGINEERING TEXAS A&M UNIVERSITY

### Challenges

- Unknown field dispersion function
- Large perception uncertainties
- Limited sensing range
- Moving fields



### Problem definition

- Given the observation set, plan trajectory to guide robot to generate ellipses to cover

the UTF's boundary with the quality metric satisfied.

Binbin Li and Dezhen Song, *Probabilistic Boundary Coverage for Unknown Target Fields with Large Perception Uncertainty and Limited Sensing Range,* International Symposium on Robotics Research (ISRR), Puerto Varas, Chile, Dec. 11-14, 2017

### **Co-Robot Navigation in Unknown Target Fields**

APUTER SCIENCE

Go t

Stop

### **Problem definition**

Input:

- Human inputs using high-level landmarks including semantic commands (e.g. avoid object 1, or patrol between object 2 and object 3).
- Low level landmarks from SLAM
- Output:
  - A trajectory in SE(3) for robot to

Path execute. Joseph Lee, Yan Lu, Yiliang Xu, Dezhen Song, Visual Programming for Mobile Robot Navigation Using High-level Landmarks, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, Oct. 9-14, 2016

**High-level** landmark

selection

**High-level** 

landmarks

Motion

command sequence

Pose graph

Roadmap

Start at

175-245

Go to

Left at

Keypose

### **Air-Launched Drifter System**

#### Super-pressure Balloon

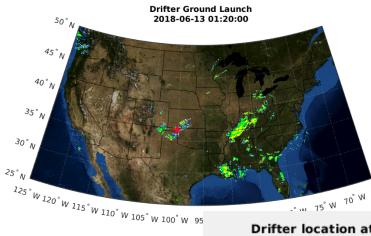
- Material: 30 µm Polyethylene Foil
- Helium Capacity: 125 L
- Can carry a payload of 92.5 g to 10,000ft

| PTH Sensor: MS8607 |                |                 |            |  |
|--------------------|----------------|-----------------|------------|--|
|                    | Max. Operating | Accuracy @ 25°C | Resolution |  |
|                    | Range          |                 |            |  |
| Pressure           | 10-2000 mbar   | $\pm 2$ mbar    | 0.016 mbar |  |
| Temperature        | -40 - 80 °C    | ± 1 °C          | 0.01 °C    |  |
| Relative Humidity  | 0 - 100 %      | ± 3 %           | 0.04%      |  |

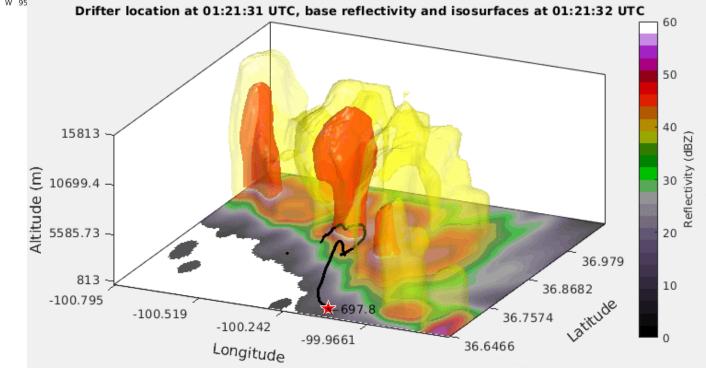
| GPS Module: ublox CAM-M8Q  |                    |             |  |
|----------------------------|--------------------|-------------|--|
| <b>Horizontal Position</b> | Max. Navigation    | Sensitivity |  |
| Accuracy                   | <b>Update Rate</b> |             |  |
| 2.5 m                      | 10 Hz              | -166 dBm    |  |

| Component               | Mass (g) |                                       |
|-------------------------|----------|---------------------------------------|
| 1.5V Battery and Holder | 10.5     | · · · · · · · · · · · · · · · · · · · |
| PCB                     | 6        |                                       |
| Radio                   | 2        |                                       |
| GPS Module              | 0.5      | •                                     |
| Microcontroller         | 0.01     |                                       |
| PTH Sensor              | 0.01     |                                       |
| Miscellaneous Parts     | 1        |                                       |
| Total:                  | ~ 20     |                                       |




1




| Aspect                | Value                   |
|-----------------------|-------------------------|
| Empty Weight          | 18 lb                   |
| Max. Payload Capacity | 15 lb                   |
| Wingspan              | 16 ft                   |
| Autopilot             | Pixhawk                 |
| Max. Speed            | 90kts (~104 mph 46 m/s) |
| Loiter Speed          | 38 kts (~44 mph 20 m/s) |
| Endurance*            | 2-6 hrs                 |



## Supercell Verification



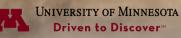
- June 12, 2018
- Storm located in Oklahoma panhandle
- Nexrad data from Dodge City, KS



# **Field Experiments**



Successful storm intercept, June 8, 2018, South Central SD




New Mobile UAS Research Collaboratory (MURC) and CU Mistral aircraft for extended endurance





NRI: Collaborative Research: Targeted Observation of Severe Local Storms Using Aerial Robots



#### **UMN** Team

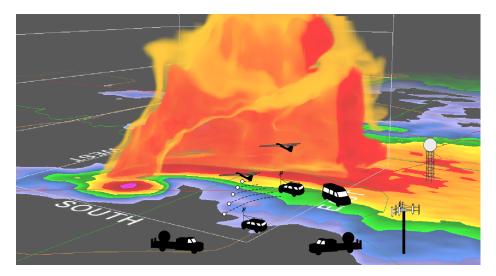
- Volkan Isler (UMN PI)
- Two partially supported PhD

### Students:

- Nikolaos Stefas (sensing-aware
  - planning; UAV Navigation)
- Minghan Wei (energy-aware planning)

- Post-doc: Haluk Bayram (partial support)
- Undergraduate Student
  - Alan Koval (optimal paths for

turning a corner with a Dubins


car – ICRA submission!)



NRI: Collaborative Research: Targeted Observation of Severe Local Storms Using Aerial Robots

#### Texas A&M Team

- Dezhen Song (TAMU PI)
- 4 PhD Students:
  - Binbin Li (Algorithm Development Storm field Tracking )
  - Joseph Lee (Algorithm and system development - Co-Robot navigation)
  - Chieh Zhou (Algorithm Development Sparse method for fast optimization in graph)
  - Jasmine Zheng (Algorithm Development -Sensing)
- 1 MS Student:
  - Di Wang (experiment assistant)
- Undergraduate Student
  - Ankit Ramchandani (experiment assistant)



## **TTUKa Specs**

Transmitter Frequency: ~34,860 MHz ( $\lambda$ =8.6 mm)

**Transmit Power:** Transmitter Type: **Duty Cycle:** Antenna Gain: Antenna Type: Antenna Beamwidth: **Polarization:** Waveguide: PRF: Gate Spacing: **Receiver: IF Frequency:** Pedestal: DSP: Vehicle: Moments:

200 W peak, 100 W average TWTA up to 50% 50 dB Cassegrain feed, epoxy reflector 0.33 deg Linear, horizontal WR-28, pressurized Variable, up to 20 KHz 15 m MDS: -118 dBm 60 MHz Orbit AL-4016 Vaisala/Sigmet RVP-9 Chevy C5500 Crewcab





Reflectivity, radial velocity, spectrum width

### Severe-storm Targeted Observation and Robotic Monitoring (STORM)

#### **Objectives and Description**

- Autonomous self-deploying aerial robotic systems (SDARS) will enable new in-situ atmospheric science applications through <u>targeted observation</u>.
- SDARS is comprised of:
  - multiple fixed-wing unmanned aircraft,
  - deployable Lagrangian drifters,
  - mobile Doppler radar,
  - distributed computation nodes in the field and in the lab,
  - a net-centric middleware connecting the dispersed elements
  - autonomous decision-making that closes the loop between sensing in the field and online numerical weather prediction

#### **Status and Approach**

- Subsystem development and testing, including field deployments
- New effort focusing on atmospheric science application => add science goals into planning framework
- Deployable sensors to drift with wind to provide additional data along streamlines



#### **Merit and Impact**

| Intellectual Merit             | Broader Impact                            |
|--------------------------------|-------------------------------------------|
| In-situ wind measurement       | Atmos. science, wind turbines, beyond PBL |
| Onboard and cloud-based        |                                           |
| autonomy                       | Safe, robust operation of                 |
|                                | UAS in the NAS                            |
| Deployable sensors             |                                           |
|                                | Application-specific flight               |
| Wind energy extraction         | plan optimization                         |
| Online trajectory optimization |                                           |