
Figure 4A: To control a dynamic human-
machine system, such as an
exoskeleton, we need to be able to
quickly learn an approximation of its
dynamics and generate stable control
based on the learned model. Here, we
use the Koopman Operator and machine
learning techniques to approximate the
hybrid dynamics of a SLIP model. The
top cartoon illustrates how we
differentiate hybrid modes. The bottom
plots show a SLIP trajectory generated
using model-predictive control and a
data-driven model (created without any a
priori knowledge of system dynamics).

Data-driven Learning of Human-
Machine Systems

Figure 4B: We apply the same model-learning algorithms to data of human walking.
Visible below is gait partitioning of an individual walking freely in the Ekso Bionics
exoskeleton. Such segmentation is generated from only 30s of kinematic data.

participants (N=27) for the
considered task metrics is
visible on the left. The key
point is that performance
improves more quickly when
subjects train using the
hybrid shared controller as
assessed across 4 different
task metrics. This might be
due to the fact that the
interface only rejects bad
decisions, rather than
enforcing good ones---
providing feedback without
explicit guidance.

Figure 1A: The Ekso Bionics exoskeleton
provides the means to assist a person
during balance and locomotion. In the
ideal case, it would adapt to the users’
natural gait pattern and allow them to
maneuver freely. The exoskeleton has
and will continue serving as an important
testbed for the developed algorithms.

Figure 5B: The automation was able to assist subjects in completing the cart-
pendulum inversion task when the hybrid shared controller was engaged.
Subjects perform better in terms of time to success and balance time compared
to controls and their own unassisted trials. However, task-specific measures

Experimental Platforms

Figure 1B: Upper limb robotic platform used during
experiments. It provides haptic feedback to simulate
an inertial model via admittance control and is able
to generate enough force to overpower a user’s
actions. In our experiments we asked users to invert
a simulated cart-pendulum system, providing input
and receiving guidance through the robot.

Accelerated Training Through 
Forceful Interaction

Increased Skill Retention 

NRI: Task-Based Assistance For Software-Enabled 
Biomedical Devices

Katie Fitzsimons, Todd Murphey

Aim: Human-machine interfaces have become necessary to ensure
safe, reliable interaction with complex systems in activities ranging
from driving a wheelchair to rehabilitation therapy. Effective interfaces
can reduce the cognitive load on a human operator by planning
efficient routes, automating obstacle avoidance, managing low level
controls of robotics, and filtering input signals. Interfaces may also
provide feedback aimed to improve task performance and training,
even after neurological injury. However, such interfaces must be able
to manage substantial uncertainty that stems from the unpredictable
nature of human behavior.
The proposed work will create software-enabled, task-specific support
for assistive biomedical devices. The algorithms will enable devices to

support motion when the goal is motor learning or relearning.

How? The proposed work will develop algorithms to control
physical hardware that will modify human operator motion.
We will use haptic force generation both to create cues and
to act on a person during motion to impact task performance.
The generality of the approach (requiring only a physical
model and task encoded as an objective function) will enable
a broad spectrum of assistance previously implausible.

Why? Approaches to designing
kinesthetic feedback for robotic training
platforms lie on a spectrum from
antagonistic and resistive strategies that
are dynamically updated based on user
performance to passive assistive
strategies in which users have a
consistent guide during training. Training
regimens at either end of the spectrum
have been shown to be appropriate
depending on the type and relative
difficulty of the task.
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Figure 2: We create a shared control paradigm based
on the filtering of user inputs. The robot assists with
tasks by physically accepting, rejecting, or replacing
user actions.

Figure 5A: Participants trained in week 1 retain high performance level in week 2 as
measured by RMS error and ergodicity. The trained group retains their initial performance

How should devices support motion when
the goal is motor learning or relearning?
How can we design feedback without
dictating how a task is done?

Figure 3: We used the the NACT3D, pictured in Fig. 1B, to filter out physical inputs 
from a user to assist with cart-pendulum inversion. The robotic filtering of user inputs 
led to accelerated learning of the task. Average performance data for all study

We show that our filter-based approach is
sensitive to user skill level, meaning it engages
less, the better a user is at a task and vice versa.

level while the control 
group continues to 
improve—eventually 
reaching the same 
level of performance 
as the trained group. 
It appears the 
feedback helped with 
retention because the 
learning was more 
structure.
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lacked the 
granularity to 
detect training 
effects.


