
Figure 4A: To control a dynamic human-

machine system, such as an

exoskeleton, we need to be able to

quickly learn an approximation of its

dynamics and generate stable control

based on the learned model. Here, we

use the Koopman Operator and machine

learning techniques to approximate the

hybrid dynamics of a SLIP model. The

top cartoon illustrates how we

differentiate hybrid modes. The bottom

plots show a SLIP trajectory generated

using model-predictive control and a

data-driven model (generated without

any a priori knowledge of system

dynamics).

Data-driven Learning of Human-

Machine Systems

Figure 4B: We apply the same model-learning algorithms to data of human walking.

Visible below is gait partitioning of an individual walking freely in the Ekso Bionics

exoskeleton. Such segmentation is generated from only 30s of kinematic data.

led to accelerated learning

of the task.

Average performance data

for all study participants

(N=27) for the considered

task metrics is visible on the

left. The key point is that

performance improves more

quickly when subjects train

using the guidance of the

filtering scheme. This might

be due to the fact that the

interface only rejects bad

decisions, rather than

enforcing good ones,

making the operator

responsible for any success.

Figure 1A: The Ekso Bionics exoskeleton

provides the means to assist a person

during balance and locomotion. In the ideal

case, it would adapt to the users’ natural

gait pattern and allow them to maneuver

freely. It has and will continue serving as an

important testbed for the developed

algorithms.

Figure 5B: For a simulated low-skill hopper (left), the shared control paradigm keeps it upright

with only 40% intervention. And for a skilled hopper (right), the paradigm allows the hopper to

change speed and direction with minimal intervention (~20%). These results suggest that such

shared control could provide users with the desired combination of safety and flexibility.

Experimental Platforms

Figure 1B: Upper limb robotic platform used during

experiments. It provides haptic feedback to simulate

an inertial model via admittance control and is able

to generate enough force to overpower a user’s

actions. In our experiments we asked users to invert

a simulated cart-pendulum system, providing input

and receiving guidance through the robot.

1 Introduction

Assistive devices are intended to enable a subject—sometimes impaired due to injury or degeneration—
to move in a stable and safe manner. However, support strategies are often task independent, pro-
viding a combination of impedance and admittance to regulate motion. The problem with such an
approach is that the device’s response must be very conservative, appropriate for any motion.

In the proposed work we will focus on task-based support of motion, specifically considering
dynamic tasks. Dynamic tasks, such as walking or balance, are more challenging to automatically
support in software. First, the optimal support is often state dependent—for instance, an ex-
oskeleton should ideally take speed and stance into account when supporting the body. Such state
dependent responses are often complex to compute; they may involved solving partial differential
equations such as the Hamilton-Jacobi-Bellman (HJB) equations [47]. Moreover, a state-dependent
control typically depends on knowledge of the environment, which may change dynamically. More-
over, the control approach leads to an unintended negative consequence—helping a subject more
than intended, undermining therapeutic impact [35, 58] by assisting when assistance is not required.

The control approach used in the proposed work was developed with these requirements in
mind. Sequential Action Control (SAC) [7, 92] is reactive to state and an input signal. We can use
it both to support motion and filter motion, as discussed in Section 4.1 and 4.3. SAC is well-posed
for general nonlinear systems, including non-smooth effects, making it a candidate general purpose
tool for embedded systems development. Nevertheless, SAC is not the focus of the proposed work;
rather, SAC will be used as a technology to create task-aware physical interfaces.

Figure 1: The Ekso Bionics exoskeleton provides
the means to assist a person during balance and
locomotion. However, an assistive device poten-
tially needs to take the task into account during
controlled motion, implying the control architec-
ture needs to provide assistance when necessary.

The proposed work is based on the assumption
of always having access to an optimal policy—or at
least a good policy—as a function of the evolving
environment and human operator. SAC provides
such a capability, but any control paradigm com-
putable in real-time could be used. However, it is
not clear that there are many options for real-time
control of under-actuated, high dimensional, non-
linear systems. Nevertheless, by assuming the exis-
tence of a policy, we may ask what someone should
do, assist them in doing it, and/or filter their physi-
cal inputs to avoid injury. Our particular approach
will depend on both control assistance and control
filtering. As mentioned in Sections 4.1-4.5, we have
considerable preliminary data indicating both fea-
sibility and utility of the proposed approach.

The research will include mathematical anal-
ysis of the proposed interface design techniques,
development of stability guarantees for human-in-
the-loop (HITL) systems, and the development
of algorithmic methods for embedding control de-
signs onto very minimal computational architec-
tures (e.g., hardware accelerators [81]). The work
will involve experimentation on three hardware platforms of varying difficulty and software devel-
opment to support translation of algorithms between hardware and sharing of algorithms with the
rest of the robotics and rehabilitation communities. Hardware experimentation will include a col-
laboration with Ekso Bionics and their hardware exoskeletons. The outcomes of the proposed work

1

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
0

0.1

0.2

0.3

0.4

Su
cc

es
s 

Ra
te

0.5

0.55

0.6

0.65

0.7

RM
S 

Er
ro

r**

*

*** ***

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
0

0.5

1

1.5

Ba
la

nc
e 

Ti
m

e

25

26

27

28

29

30

Ti
m

e 
to

 S
uc

ce
ss*** ***

training group training group with MIG filter control group

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
0

0.5

1

1.5

Ba
la

nc
e 

Ti
m

e *** ***

training group training group with MIG filter control group

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
0

0.5

1

1.5

Ba
la

nc
e 

Ti
m

e

25

26

27

28

29

30

Ti
m

e 
to

 S
uc

ce
ss*** ***

training group training group with MIG filter control group

Accelerated Training Through 

Forceful Interaction
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Safety-Oriented Assistance with 

Minimal Interference

NRI: Task-Based Assistance For Software-Enabled 
Biomedical Devices

Aleksandra Kalinowska, Todd Murphey

Aim: Human-machine interfaces have become necessary to ensure safe, reliable

interaction with complex systems in activities ranging from driving a car to

rehabilitation therapy. Effective interfaces can reduce the cognitive load on a

human operator by planning efficient routes, automating obstacle avoidance,

managing low level controls of robotics, and filtering input signals. Interfaces may

also provide feedback aimed to improve task performance and training, even after

neurological injury. However, such interfaces must be able to manage substantial

uncertainty that stems from the unpredictable nature of human behavior.

The proposed work will create software-enabled, task-specific support for assistive

biomedical devices. The algorithms will keep the assisted person safe while

leaving the user free to both move and exert effort.

How? The proposed work will develop

algorithms to control physical hardware that

will modify human operator motion. We will

use haptic force generation both to create

cues and to act on a person during motion to

impact task performance. The generality of the

approach (requiring only a physical model and

task encoded as an objective function) will

enable a broad spectrum of assistance

previously implausible.

Why? Ability to exert effort, freedom to move

freely, and maintaining safety are key features

of a successful human-machine interface.

Lack of user effort has been shown to lead to

overreliance and limit or even reverse learning.

In rehabilitation settings, patient effort is

particularly important, because it is critical for

therapeutic impact. During assistance,

operators want to maintain freedom to move

and control the device. No matter the objective

, users need to remain safe.

Filter-Based Shared Control
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Performance Metric

Skill-sensitivity

Skilled user – 0% intervention; 

noise input – ~50% intervention.

Simulated Results:

Performance 
Metric

Magnitude of Pearson 
Correlation Coefficient

Success Rate 0.20, p < 0.001

Balance Time 0.13, p = 0.003

Time to Success 0.21, p < 0.001

Experimental Results:
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Figure 2: We create a shared control paradigm based on

the filtering of user inputs. The robot assists with tasks by

physically accepting, rejecting, or replacing user actions.

Figure 5A: The filtering shared control paradigm can be used for assistance to

ensure safety without interfering with the task. We tested it on a simulated SLIP

hopper. Note that the shared control in combination with a stable controller can

How should devices support motion without
dictating how a task is done? How should
algorithms support maximal intentionality of
an operator while keeping them safe?

Figure 3: We used the the NACT3D, pictured in Fig. 1B, to filter out physical inputs 

from a user to assist with cart-pendulum inversion. The robotic filtering of user inputs

We show that our filter-based approach is

sensitive to user skill level, meaning it engages

less, the better a user is at a task and vice versa.

keep balanced even a

simulated unskilled hopper

generating actions based on

Gaussian noise. Trajectory

visible on the left.


