NRI: Task-Based Assistance For Software-Enabled
Biomedical Devices

Aim: Human-machine interfaces have become necessary to ensure safe, reliable
interaction with complex systems in activities ranging from driving a car to
rehabilitation therapy. Effective interfaces can reduce the cognitive load on a
human operator by planning efficient routes, automating obstacle avoidance,
managing low level controls of robotics, and filtering input signals. Interfaces may
also provide feedback aimed to improve task performance and training, even after
neurological injury. However, such interfaces must be able to manage substantial
uncertainty that stems from the unpredictable nature of human behavior.

The proposed work will create software-enabled, task-specific support for assistive
biomedical devices. The algorithms will keep the assisted person safe while
leaving the user free to both move and exert effort.

Experimental Platforms

Figure 1A: The Ekso Bionics exoskeleton
provides the means to assist a person
during balance and locomotion. In the ideal
case, it would adapt to the users’ natural
gait pattern and allow them to maneuver
freely. It has and will continue serving as an
important testbed for the developed
algorithms.

and receiving guidance through the robot.

Data-driven Learning of Human-
Machine Systems

Figure 4A: To control a dynamic human-
machine system, such as an ? J \ ? J \ ?

exoskeleton, we need to be able to
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Why? Ability to exert effort, freedom to move How? The proposed work will develop
freely, and maintaining safety are key features algorithms to control physical hardware that
of a successful human-machine interface. will modify human operator motion. We will
Lack of user effort has been shown to lead to use haptic force generation both to create
overreliance and limit or even reverse learning. cues and to act on a person during motion to
In rehabilitation settings, patient effort is impact task performance. The generality of the
particularly important, because it is critical for approach (requiring only a physical model and

therapeutic  impact.  During  assistance, task encoded as an objective function) will
operators want to maintain freedom to move enable a broad spectrum of assistance

and control the device. No matter the objective previously implausible.

. users need to remain safe.

Filter-Based Shared Control

Rate of controller
Intervention

Performance Metric

Simulated Results:
Skilled user — 0% intervention; E

noise input — ~50% intervention. ﬂ».—
Figure 1B: Upper limb robotic platform used during Experimental Results:
experiments. It provides haptic feedback to simulate S —— e e
an inertial model via admittance control and is able Metric Correlation Coefficient
to generate enough force to overpower a user’s Success Rate 0.20, p < 0.001
actions. In our experiments we asked users to invert Balance Time 0.13, p = 0.003
a simulated cart-pendulum system, providing input Time to Sucoess 0,21, p< 010071

Skill-sensitivity Figure 2: We create a shared control paradigm based on

the filtering of user inputs. The robot assists with tasks by

physically accepting, rejecting, or replacing user actions.
We show that our filter-based approach is
sensitive to user sKkill level, meaning it engages
less, the better a user is at a task and vice versa.

accept

F
user

replace
F F

robot
—> Luser_ «——Tobo

How should devices support motion without
dictating how a task is done? How should
algorithms support maximal intentionality of

quickly learn an approximation of its

dynamics and generate stable control 2 (m) Enlmfs) == au(m) =

based on the learned model. Here, we 10
use the Koopman Operator and machine
learning techniques to approximate the "
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hybrid dynamics of a SLIP model. The : ; ; ;
top cartoon illustrates how we |
differentiate hybrid modes. The bottom
plots show a SLIP trajectory generated

Control

an operator while keeping them safe?

Accelerated Training Through

C h Figure 3: We used the the NACT3D, pictured in Fig. 1B, to filter out physical inputs

from a user to assist with cart-pendulum inversion. The robotic filtering of user inputs

using model-predictive control and a
data-driven model (generated without

0.7

any a priori knowledge of system O el
dynamics).

Figure 4B: We apply the same model-learning algorithms to data of human walking.
Visible below is gait partitioning of an individual walking freely in the Ekso Bionics

exoskeleton. Such segmentation is generated from only 30s of kinematic data.
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Safety-Oriented Assistance with
Minimal Interference

Figure 5A: The filtering shared control paradigm can be used for assistance to

ensure safety without interfering with the task. We tested it on a simulated SLIP

hopper. Note that the shared control in combination with a stable controller can
e keep balanced even a
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led to accelerated learning
of the task.

Average performance data
for all study participants
(N=27) for the considered
task metrics is visible on the
left. The key point is that
performance improves more
quickly when subjects train
using the guidance of the
filtering scheme. This might
be due to the fact that the
interface only rejects bad
decisions, rather  than
enforcing good ones,
making the operator
responsible for any success.

Figure 5B: For a simulated low-skill hopper (left), the shared control paradigm keeps it upright
with only 40% intervention. And for a skilled hopper (right), the paradigm allows the hopper to
change speed and direction with minimal intervention (~20%). These results suggest that such
shared control could provide users with the desired combination of safety and flexibility.
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