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Figure 1. Schematic of a variational autoencoder (VAE) for background subtraction used in our DeepPBM.

network did not need to be retrained for each new scene, its
performance degraded if the scene was not included in the
training set.

As we mentioned before, despite the high performance
of current deep learning methods in foreground/ back-
ground segmentation, these methods are supervised and
highly dependant on the extracted on the quality of the
background model that they use for BS. Moreover none
of them are tested on long videos to show their adaptation
quality in real applications that need long-term video in-
spection.

3. Proposed DeepPBM Estimation Approach

Variational autoencoders (VAEs) have emerged as one
of the most popular approaches to unsupervised learning of
complicated distributions that underlie models or generate
data [8,12]. VAEs are compelling since they can be set up in
the framework of DNNs, and therefore benefit from the on-
going advances in this field. In the context of DNNs, a VAE
consists of an encoder and a decoder. The encoder learns
an efficient representation of its input data and projects that
into a stochastic lower dimensional space, known as latent
variables. This lower dimensional representation is stochas-
tic in the sense that the encoder learns the parameters asso-
ciated with the underlying probability distributions of these
latent variables. The decoder, as its name suggests, tries to
recover the original data, given the probabilistic latent vari-
ables from the encoder. The entire network is trained by
comparing the original input data with its reconstruction,
which is the output of the decoder [8]. An overview of the
VAE with its building blocks is shown in Fig. 1. We further
discuss the mathematical details of each part in Section 3.1

From an information theoretic point of view, the com-
pression of the high dimensional input to a low dimensional
space as done in the encoder part of VAE (also referred to
as network bottleneck), and then decompressing it back to
the original space leads to the loss of information, which
is measured and used to learn the network. This lossy low
dimensional representation of the input data is a desired at-
tribute that can be utilized in the context of BS in surveil-
lance videos. This attribute follows similar principles em-
ployed in low-rank subspace learning approaches for un-

supervised BS. Further, it can benefit from the power and
flexibility of DNNs in learning a more effective low dimen-
sional space. As mentioned in a previous work [22], the
highly redundant nature of the static background in surveil-
lance videos, suggests that DNN can effectively learn a very
low dimensional model of the background from subsequent
frames, and unavoidably discards/neglects the highly vari-
ant information contained in moving foregrounds which are
not compressible in such low dimensionalities. Following
aforementioned significance, the main idea behind our pro-
posed DeepPBM is using VAE built on top of a DNN for
the purpose of unsupervised BS considering the low dimen-
sional representation attribute of VAE along with the com-
pression capacity of background images.

3.1. Probabilistic Modeling of the Background in

Videos

Considering that video frames f (i) 2 V, i = [1, . . . , N ],
each of size w ⇥ h pixels, are generated from d underly-
ing probabilistic latent variables vectorized in z 2 Rd in
which d ⌧ w ⇥ h, the vector z is interpreted as the com-
pressed representation of the video. A VAE considers the
joint probability of the input video, V , and its representa-
tion, z, to define the underlying generative model:

p✓(V, z) = p✓(V|z)p(z) (1)

where p(z) = N (0, I) is the standard Gaussian prior for
latent variables z, and p✓(V|z) is the decoder part of a VAE
that is parameterized by a DNN with parameters ✓. In the
encoder part of the VAE, the posterior distribution p(z|V) is
approximated with a variational posterior q�(z|V) with pa-
rameters �. Each dimension of the latent space in this vari-
ational posterior is modeled independently with a Gaussian
mean and variance for each video frame:

q�(z|f) =
dY

k=1

N (zk|µf
k ,�

f
k

2
), (2)

where µ
f , and �

f 2 are outputs of the encoder, q�(z|f),
which is also parameterized by a DNN with parameters �.
The efforts in making this variational posterior as close as
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Figure 1. Schematic of a variational autoencoder (VAE) for background subtraction used in our DeepPBM.

network did not need to be retrained for each new scene, its
performance degraded if the scene was not included in the
training set.

As we mentioned before, despite the high performance
of current deep learning methods in foreground/ back-
ground segmentation, these methods are supervised and
highly dependant on the extracted on the quality of the
background model that they use for BS. Moreover none
of them are tested on long videos to show their adaptation
quality in real applications that need long-term video in-
spection.

3. Proposed DeepPBM Estimation Approach

Variational autoencoders (VAEs) have emerged as one
of the most popular approaches to unsupervised learning of
complicated distributions that underlie models or generate
data [8,12]. VAEs are compelling since they can be set up in
the framework of DNNs, and therefore benefit from the on-
going advances in this field. In the context of DNNs, a VAE
consists of an encoder and a decoder. The encoder learns
an efficient representation of its input data and projects that
into a stochastic lower dimensional space, known as latent
variables. This lower dimensional representation is stochas-
tic in the sense that the encoder learns the parameters asso-
ciated with the underlying probability distributions of these
latent variables. The decoder, as its name suggests, tries to
recover the original data, given the probabilistic latent vari-
ables from the encoder. The entire network is trained by
comparing the original input data with its reconstruction,
which is the output of the decoder [8]. An overview of the
VAE with its building blocks is shown in Fig. 1. We further
discuss the mathematical details of each part in Section 3.1

From an information theoretic point of view, the com-
pression of the high dimensional input to a low dimensional
space as done in the encoder part of VAE (also referred to
as network bottleneck), and then decompressing it back to
the original space leads to the loss of information, which
is measured and used to learn the network. This lossy low
dimensional representation of the input data is a desired at-
tribute that can be utilized in the context of BS in surveil-
lance videos. This attribute follows similar principles em-
ployed in low-rank subspace learning approaches for un-

supervised BS. Further, it can benefit from the power and
flexibility of DNNs in learning a more effective low dimen-
sional space. As mentioned in a previous work [22], the
highly redundant nature of the static background in surveil-
lance videos, suggests that DNN can effectively learn a very
low dimensional model of the background from subsequent
frames, and unavoidably discards/neglects the highly vari-
ant information contained in moving foregrounds which are
not compressible in such low dimensionalities. Following
aforementioned significance, the main idea behind our pro-
posed DeepPBM is using VAE built on top of a DNN for
the purpose of unsupervised BS considering the low dimen-
sional representation attribute of VAE along with the com-
pression capacity of background images.

3.1. Probabilistic Modeling of the Background in

Videos

Considering that video frames f (i) 2 V, i = [1, . . . , N ],
each of size w ⇥ h pixels, are generated from d underly-
ing probabilistic latent variables vectorized in z 2 Rd in
which d ⌧ w ⇥ h, the vector z is interpreted as the com-
pressed representation of the video. A VAE considers the
joint probability of the input video, V , and its representa-
tion, z, to define the underlying generative model:

p✓(V, z) = p✓(V|z)p(z) (1)

where p(z) = N (0, I) is the standard Gaussian prior for
latent variables z, and p✓(V|z) is the decoder part of a VAE
that is parameterized by a DNN with parameters ✓. In the
encoder part of the VAE, the posterior distribution p(z|V) is
approximated with a variational posterior q�(z|V) with pa-
rameters �. Each dimension of the latent space in this vari-
ational posterior is modeled independently with a Gaussian
mean and variance for each video frame:

q�(z|f) =
dY

k=1

N (zk|µf
k ,�

f
k

2
), (2)

where µ
f , and �

f 2 are outputs of the encoder, q�(z|f),
which is also parameterized by a DNN with parameters �.
The efforts in making this variational posterior as close as

3





Slow motion (playback speed: !
"#

x )

Egyptian bat 
roosting maneuver, 
A. Ramezani, MEMS-based instrumentation
S. Swartz & K. Breuer (Brown University)





NU’s SiliconSynapse Lab.



NU’s SiliconSynapse Lab.

“Responsibility of feedback subsumed 
under mechanical intelligence in 
armwing design”
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