
State Management for the
Telco’s Edge

Bharath Balasubramanian, Principal Inventive Scientist
ATT Labs Research

NSF CPS Workshop, Nov 16, 2018

ATT’s Interaction with the Edge

Life cycle management of VNFs across
thousands of network cloud sites

formed by morphing central offices,
customer premises, etc.,
into virtualized centers.

Orchestrator, Policy Engine,
SDN Controller, etc. deployed

across multiple sites.

Reference architecture for edge cloud.

Federated Akraino/
Edge Infrastructure Stack Controllers each

managing hundreds of edge sites.

Virtualize the RAN and control
it centrally.

Controllers managing thousands of
cell sites.

Existing state management solutions are perfectly
suited to manage state within a site or across a

few sites. What about edge scale?

These software components have state and need
to be fault-tolerant, highly available and

performant.

Basic Requirements of an edge-scale state
management service

DB
Instance

Service

DB
Instance

Service DB
Instance

Service

Efficient performance
for reads and writes

at local (or within data-
center/site) db.

Sufficient geo-replication of
state across db instances to
enable global management,
failover, client mobility etc.

Example 1: Active Replication with Failover for
ONAP Components

ONAP
Service

Each service instance performs
local transactions

only on a subset of requests
[efficiency] On failure of a service instance

another should be able to take over
from the latest state of the requests

[geo-replication of state]

ONAP
Service

ONAP
Service

Different instances of same
ONAP service.

E.g. SDN controller

Example 2: Federated Controllers for Akraino

Edge
Controller

Edge
Controller

Edge
Controller

Edge
Controller

Edge
Controller

Edge
Controller

Regional
ControllerEach Edge Controller

Performs local transactions
on requests
[efficiency]

Regional Controller (s) each controlling
hundreds of edge controllers

occasionally acquires required state of
some edge controllers and modifies it

to enforce global policies
[geo-replication]

Problem: Finding the right balance between
efficiency and geo-replication semantics

High efficiency but
weakest cross-site guarantees.

E.g. PostgreSQL, Cassandra async
replication across sites – cannot

obtain latest state for failover, global
management

Strongest cross-site guarantees
but costly protocols for

geo-replication (2 PC, distributed
consensus). E.g. Zookeeper, Fully

transactional MariaDB Gallera, Spanner,
CockrachDB,

Open questions in this quest for balance

• What are the right semantics for a state management service?
• How do basic assumptions on consistency change at the edge?
• What design patterns/recipes can we provide that enables better

state management?
• Is there a CAP theorem for the edge?

