

Testing UAVs

Alexander Pretschner

TUM | fortiss | bidt

jww Tabea Schmidt, Florian Hauer

Assured CPS Autonomy for 3D Urban Transportation:

Drones, Flying Cars and Beyond

June 9th 2021

Motivation

https://www.youtube.com/watch?v=crHdX7ODvYo

Test case generation for automated driving systems: try to find an environment (street layout, other cars, their environment) that leads to a violation of safety distance

Cannot reuse pre-recorded drives -

but can cluster recorded drives to infer scenario types; then use these to find "extreme" instances

Testing cars is simple: We have regulation and scenario types!

Test case generation for automated driving systems: try to find an environment (street layout, other cars, their environment) that leads to a violation of safety distance

Cannot reuse pre-recorded drives – but can cluster recorded drives to infer scenario types; then use these to find "extreme" instances

Testing cars is simple: We have regulation and scenario types!

And the second second second		and the second state	NALL STREET				CAR NO.
				CESSANNA (CCS)		CLEATION FOR	
and the second second second second	the second second		and the second	C. C		D.C. Stimbles	al market
2010000075							
and a state of the lot of		a starte and					Augura a

Test case generation for automated driving systems: try to find an environment (street layout, other cars, their environment) that leads to a violation of safety distance

Cannot reuse pre-recorded drives – but can cluster recorded drives to infer scenario types; then use these to find "extreme" instances

Testing cars is simple: We have regulation and scenario types!

Test case generation for automated driving systems: try to find an environment (street layout, other cars, their environment) that leads to a violation of safety distance

Cannot reuse pre-recorded drives – but can cluster recorded drives to infer scenario types; then use these to find "extreme" instances

Testing cars is simple: We have regulation and scenario types! $f = \min\{d(t) - safeDist(t)\}$ $t \in [t_{start}, t_{end}]$ $t \in [t_{start}, t_{end}]$ $t \in [t_{start}, t_{end}]$

Test case generation for automated driving systems: try to find an environment (street layout, other cars, their environment) that leads to a violation of safety distance

Cannot reuse pre-recorded drives – but can cluster recorded drives to infer scenario types; then use these to find "extreme" instances

Alexander Pretschner | UAV workshop | June 9th, 2021 | slides: Tabea Schmidt; to be presented at IV 2021

Understanding Safety of UAVs in Urban Areas – Motivation

Challenges: No systematic tests for UAVs!

- A. Testing the behavior of the UAV in various scenarios.
- B. Ensuring that it behave safely even in the most challenging situations (worst-case situations).
- C. Explicitly defining the safe behavior of a UAV in each possible situation.
- D. "Good" tests? Those that reveal potential defects, with good cost effectiveness. Optimization problem.

Two cases:

(i) A safety distance s is specified, UAV needs to keep distance d > s. *Objective: minimize d-s*

 (ii) No safety distance can be specified, worst-case situations need to be found.
Objective: minimize d

Generating "Good" Test Cases – Boundary Analysis Testing

In addition to minimizing distance, we need to encode geometry. **Fitness functions for Boundary Analysis Testing:**

(a) fly around obstacles or (c) fly above them:

$$f = \begin{cases} \min(d(t)), \\ \infty, \end{cases}$$

if given logical scenario is displayed otherwise

(b) fly through a gap of width w between two obstacles or (d) fly below them:

$$f = \begin{cases} \min(w) \\ \infty, \end{cases}$$

if given logical scenario is displayed otherwise

Experimental Results – Boundary Analysis Testing

Scenario (b) Gap width: 3.76 meters \rightarrow Questionable behavior

PX4 autopilot + obstacle avoidance

Experimental Results – Boundary Analysis Testing

Scenario (b) Gap width: 4.77 meters \rightarrow Safe behavior

PX4 autopilot + obstacle avoidance

Conclusion

Challenges for testing the safe behavior of UAVs: Few rules! No scenario types yet! No definition of "safe" behavior!

Policy should include help, or a foundation, like RSS, on how to generate "good" test cases for testing the safe behavior of UAVs in urban environments?

 \rightarrow use scenario-based testing and search-based techniques to generate challenging environments

In the **experiments**, we found several safety distance violations and questionable behaviors of the UAV. \rightarrow shows the effectiveness and applicability of the proposed methodology

Outlook:

- More complex scenarios; co-operating drones; drone2X communication
- Estimate maximum number of obstacles necessary for testing; then shape/position/size in a second step