
The Formal/Informal Boundary 
for Database-oriented Analyses

Arlen Cox
Institute for Defense Analyses
Center for Computing Sciences



What is a database?

• A set of fully defined relations
• A set of rules that
– Define derived relations
– Define queries

select name from users where state = ‘MD’;

(but not just SQL)

Fully defined 
relation

Derived 
relation



Program analysis as a database problem

Data

Rules

Query

Database engine

Program

Analysis

Properties

Empty Result

Non-empty 
Result

Proof

Counter-
examples



Rules + Engine = Formal Method

Data

Rules

Query

Database engine

Formal M
ethod

Database engine is sound



Databases encourage informal interaction

• A user expects to interact with a database
• A query starts simple
• It is refined
• It is scoped
• It is optimized
• This is an informal process
• in a formal language
• Result is a formal spec (as query) that was 

informally derived



Databases have a formal/informal 
boundary

Formal

Informal

Formal 
“Database” 

Query Engine
Query Result



Informally interact with formal methods

• For FM researchers
– Maintain formal purity: sound algorithms
– Avoid unstated assumptions
– Need to address incrementality!

• For users
– Play with the tool
– Be able to predict the results
– Refine queries

• SAT and SMT already support this!
• Need for model checkers and abstract interpreters



FM FOR CODE AUDITING



FM community usage model is a myth

• Myth:
1. Developer writes specification
2. Developer writes code
3. Developer feeds code + specification to tool

• Proof: yay!
• Counterexample: ok I need to fix something

• Reality:
1. Developer writes code
2. Developer has no idea what a spec is
3. Developer changes code; goto 3



FM can still help developers: 
incrementality

• Proponents: Facebook, Vmware, Amazon, …
(companies, not academics… hmm…)

• Initial analyzer run can be slow
• Quickly reanalyze on each code change
• Assumptions:
– Analysis is changing at a slow pace
– Code is changing at a fast pace
– Team of dedicated analysis gurus to 

build/maintain analysis



Program analysis as a database problem

Data

Rules

Query

Database engine

Program

Analysis

Properties

Small change here

Quick recompute here



Code auditors are different

• A code auditor studies somebody else’s code
• Code changes infrequently
• Goal is to gain intuition about software
• Output is often a report
– What the software does
– What it doesn’t do
– Weaknesses it has



Tool-assisted code auditing

• OpenGrok – a code browser with jump-to-
use/jump-to-definition

• Grep – a string search
• Visual Studio – a developer IDE with jump-to-

use/jump-to-definition
• Understanding comes from studying code
• Tools only help navigate



FM-assisted code auditing

• Model checking and abstract interpretation 
“understand” code

• Use computer-friendly abstractions
• Need human-friendly abstractions
• Need code auditors to build their own 

abstractions
• Sort of incompatible with today’s FMs



Traditional incrementality is inappropriate

Data

Rules

Query

Database engine

Program

Analysis

Properties

This isn’t changing

And so is this

But this is



Rule-incremental formal methods

Data

Rules

Query

Database engine

Program

Analysis

Properties

Small change here

Quick recompute here

Or here



Code auditors need different tools

Code Auditors
• Study a stable or 

unchanging codebase
• Want to understand 

somebody else’s code
• Interactively customizing 

analyses
• Need rule incrementality

Software Developers
• Study a continuously 

changing codebase
• Want to find bugs in their 

own code
• Want pre-built analyses

• Need data incrementality


