
The 5th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2022 SaTC PI Meeting)
June 1-2, 2022 | Arlington, Virginia

The Tigress Endpoint Protection Tool
Transition to Practice

https://tigress.wtf

https://grand-re-challenge.org

A key issue in the MATE scenario is how to evaluate the
protection afforded by a sequence of transformations. We are
running CTF-like events where we collect gigabytes of highly
granular data showing how reverse engineers attack protected
software. The goal is to use this data to build detailed attack
models. Without access to the Tigress tool it would be impossible
to generate realistic challenges.

In a prototypical MATE (Man-At-The-End) scenario an application
developer protects an asset (keys, IP addresses, media, security
checks, intellectual property) from discovery or tampering by a
malicious end user. The developer uses an end-point protection tool
to apply a sequence of code transformations to slow down attacks.

The goal of the Tigress tool is to provide a complete set of code
transformations that protect any asset, in any application, on any
platform, against any attack, while balancing performance vs. level
of protection.

Add Your Logo and/or project info here
Award ID#:

Tigress Infrastructure

OCaml
Flatten

MergeDynamic

Split

Anti Taint
Analysis

Encode
Branches

Add
Opaque

Encode
Literals

Virtualize

Encode
Arithmetic JittingEncode

Data

Tigress Transformations

Encode
External

Anti Alias
Analysis

Self
ModifymyJit

Crypto

Entropy

Dynamic

Implicit
Flow

Opaque

Math/
Stats

CIL
loop

if

set

var binop

Parse/
Unparse AST

Type
analysis

out.c

in.c

script

seed

Application
Developer

proprietary_alg(){
. . .

}

main(){
int private_data;
if (security_check)

abort();
}

User/
Adversary

Program
Analysis

Tool

Apply T1 to proprietary_alg;
Apply T2 to proprietary_alg;
Apply T3 to security_check;

. . .

Transformation Script

Vulnerable Program Protected Program

Tigress has been developed to serve both the academic and
industrial communities as we believe learning from both will
best drive progress in the field.

T1,T2,T3

Random
Program
Generator

CTF/
Red Team

main(){
. . .

}

Generated
Programs

main(){
. . .

}

main(){
. . .

}

Assets

main(){
. . .

}

Transformed
Programs

main(){
. . .

}

main’(){
. . .

}

$$$
p6

p5 p10
t0

t8 t9
CFG

reconstruct
source

decode
bytecode

binary
code

instructions
to CFG

C
source

find
instruction
semantics

find
bytecode

arraydisassemble

backward
taint

analysis

forward
taint

analysis

execute on
representative

inputs

optimize trace
to CFG

assembly
code

p9p8p7

p4p3p2p1

p0
t5 t10t7t6

t4t3t2t1 bytecode virtual ISA decoded
instructions

instruction
trace

input
dependency

output
dependency

real instr.
trace

Christian Collberg

University of Arizona

Key Problems to be Addressed

§ Comprehensive set of protective transformations
allowing any asset to be protected

§ Comprehensive platform coverage (X86/ARM/Wasm,
Linux/MacOS/Windows, 32/64, …)

§ Comprehensive correctness testing to ensure real
programs can be protected

§ Comprehensive security evaluation giving users
confidence in the level of protection afforded their
applications

§ Performance improvements allowing low-power
platforms (IoT devices) to be protected

Societal Impact

§ Academics use Tigress as an adversary to
evaluate how novel program
analysis/malware detection algorithms
fair against highly obfuscated code

§ Industry uses Tigress to experiment with
software protection before investing in
commercial tools

§ Strong endpoint protection is necessary
to protect IoT devices against end-user
attacks (extracting proprietary data
including P and user credentials)

Impact on Education

§ Tigress has been used in Computer
Security courses to generate reverse
engineering assignments

§ We are working on auto-grading
solutions

T1,T2,T3

Random
Program
Generator

Students

main(){
. . .

}

Generated
Programs

main(){
. . .

}

main(){
. . .

}

Assets

Reverse
Engineered
Assets

Compare and
grade

Instructor

main(){
. . .

}

Transformed
Programs

main(){
. . .

}

main’(){
. . .

}

Broader Impact
Achieving a trusted cyberspace requires
securing all components: server-side
components, networking components,
user-facing endpoint components (web-
browsers, cars, smart meters, home IoT
devices). Attacks on endpoints by those
who (often legitimately) operate them are
frequently ignored when doing security
analysis, yet they often form an easily
penetrable part of the attack surface.
Freely available endpoint protection tools
is a step in solving this problem.

