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The Tigress Endpoint Protection Tool
Transition to Practice

https://tigress.wtf

https://grand-re-challenge.org

A key issue in the MATE scenario is how to evaluate the 
protection afforded by a sequence of transformations. We are 
running CTF-like events where we collect gigabytes of highly 
granular data showing how reverse engineers attack protected 
software. The goal is to use this data to build detailed attack 
models. Without access to the Tigress tool it would be impossible 
to generate realistic challenges.

In a prototypical MATE (Man-At-The-End) scenario an application 
developer protects an asset (keys, IP addresses, media, security 
checks, intellectual property)  from discovery or tampering by a 
malicious end user. The developer uses an end-point protection tool 
to apply a sequence of code transformations to slow down attacks.

The goal of the Tigress tool is to provide a complete set of code 
transformations that protect any asset, in any application, on any 
platform, against any attack, while balancing performance vs. level 
of protection.
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int private_data;
if (security_check)
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Tigress has been developed to serve both the academic and 
industrial communities as we believe learning from both will 
best drive progress in the field.
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Key Problems to be Addressed

§ Comprehensive set of protective transformations 
allowing any asset to be protected

§ Comprehensive platform coverage (X86/ARM/Wasm, 
Linux/MacOS/Windows, 32/64, …)

§ Comprehensive correctness testing to ensure real
programs can be protected

§ Comprehensive security evaluation giving users 
confidence in the level of protection afforded their 
applications

§ Performance improvements allowing low-power 
platforms (IoT devices) to be protected

Societal Impact

§ Academics use Tigress as an adversary to 
evaluate how novel program 
analysis/malware detection algorithms 
fair against highly obfuscated code

§ Industry uses Tigress to experiment with 
software protection before investing in 
commercial tools

§ Strong endpoint protection is necessary 
to protect IoT devices against end-user 
attacks (extracting proprietary data 
including P and user credentials)

Impact on Education

§ Tigress has been used in Computer 
Security courses to generate reverse 
engineering assignments

§ We are working on auto-grading
solutions
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Broader Impact
Achieving a trusted cyberspace requires 
securing all components: server-side 
components, networking components, 
user-facing endpoint components (web-
browsers, cars, smart meters, home IoT 
devices). Attacks on endpoints by those 
who (often legitimately) operate them are 
frequently ignored when doing security 
analysis, yet they often form an easily 
penetrable part of the attack surface. 
Freely available endpoint protection tools 
is a step in solving this problem.


