
Plant with vector-valued state:   𝑥̇ = 𝐴 𝑥 + 𝐵 𝑢, 𝑥 ∈ ℝ+

• If the matrix 𝐴 has at least two distinct eigenvalues, then all clock offsets 𝛿- < 𝑇 are 
tolerable.
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Detection of grid oscillations under attacks

Impact of QoT on disturbance rejection
Secure localization based on Time-of-Flight: 

Distributed  Optimization Algorithm
Q: What if sensor clocks are not synchronized and the transmission is subject to a malicious attacks?
A: Timing mismatches and incorrect information effectively introduce error in the estimation!

Stabilizability with infinite bit-rate

Control with quantized measurements 

Q: What if sensor/controller clocks are not synchronized?
A: Clock offset introduces distortion and may render the system unstable.

Plant with scalar-valued state: 𝑥̇ = 𝜆 𝑥 + 𝑏 𝑢, 𝑥 ∈ ℝ
• If            is small enough, then all clock offsets               are tolerable.
• Otherwise an upper bound ∆ on 𝛿- is derived.

Stabilization under clock offsets

Logarithmic Quantizer

Goal: Determine limitations on the clock offset tolerable for stabilization. 

Disturbances lead to oscillations in 
voltage/current phase and frequency

PMU (phase) measurements can be 
used to estimate complex eigenvalues 
associated with these oscillation—
hopefully stable!
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reference 
sinusoid

signal to 
measure

t

GPS spoofing
• Broadcast radio signals that resemble a set of 

normal GPS signals that would be received at a 
different location and/or time 

• Can be done with hardware under $500 (Software 
Defined Radio), all software available for free 
download
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Fig. 3. Distributed architecture for a 5-area power system network.

N using the most recent available vales of av for v belonging
to its predecessors and successors. PDC i also updates the
dual variables wvi for v belonging to Pi. Therefore, if a PDC
is compromised by an attack, its successors can immediately
detect the attack as the successors are affected right away in
the current iteration. However, its predecessors can only detect
the attack in the next iteration as the value of a PDC will
affect its predecessors only in the next iteration. Furthermore,
because in each iteration, the estimation in each PDC is only
affected by a subset of all other PDCs, the convergence speed
of estimates from different PDCs to the same value is reduced
compared with the centralized case, in which the estimation in
each PDC is affected by every other PDC (through the central
PDC). This is clear from the simulation results (compare Fig.
9 for the centralized case and Fig. 21 for the decentralized
case).

Remark 3: It is worth noting that a potential drawback of
decentralized schemes is that the required extra communica-
tions between local PDCs may increase the communication
overhead. The extra communication links could also become
targets for a coordinated attack.

VI. NUMERICAL SIMULATIONS

We used the IEEE 68-bus system to verify the proposed
approach. We divided the entire system into five areas (cf.
Fig. 3) with each area having one local PDC and three PMUs.
The simulated measurements are obtained using the Power
Systems Toolbox [4]. The synchronous generators are assumed
to be 6th order for the sake of practicality. A three-phase
fault is simulated at the line connecting buses 1 and 2. The
measurements are down-sampled, making the sampling period
T = 0.2s. Our objective is to estimate the post-fault inter-
area oscillations. As there are 16 generators, our algorithm
should ideally solve a 96th order polynomial. However, many
of these 96 modes are negligible and it was shown in [4]
that 40 modes suffice to capture the inter-area oscillations. We
used ρ = 10−9 in the simulation. The proposed algorithms are
lightweight in computation. In fact, in our Matlab simulations
on a computer with Intel 1.7 GHz CPU and 8 GB memory,
it took approximately 2.56 milliseconds to run our algorithm
for 50 iterations.
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Fig. 4. zk in the central PDC and ak
i in local PDCs in Algorithm 2.
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Fig. 5. zk in the central PDC and ak
i in local PDCs in Algorithm 1.

A. Simulation results in the presence of a central PDC and
synchronous communications

We first checked the convergence property of the proposed
algorithm 2 in the absence of attacks. We set ε to 0.2 to run the
simulations. Fig. 4 shows the evolution of the first 4 elements
of zk on the central PDC and the first element of ak on the
five local PDCs. It can be seen that they converge to the same
steady-state values as in the original ADMM algorithm (cf.
Fig. 5). The selected estimated modes σ and Ω in (3) (the solid
lines in Fig. 6) also converge to the actual values obtained from
the Power System Toolbox (represented by dashed lines in Fig.
6). In the simulations, the absolute time for each iteration was
on the sub-millisecond level. The total running time for all 50
iterations was around 16 milliseconds.

We then evaluated the performance of the proposed al-
gorithm in the presence of an attack on PDC 1. Following
[3] showing that GPS spoofing leads to a constant drift, we
assume that a constant drift ∆ = 0.2 occurred on PDC 1’s
estimate of ak

i at iteration no. 26. The estimated modes with
the original algorithm are given in Fig. 8. It can be seen that
the attack leads to erroneous estimation. Whereas with the

Estimation using distributed Prony algorithm
• Oscillations due to a simulated three-phase fault 

at line connecting buses 1 and 2
• Estimation of 4 dominant oscillation modes 
• Iterative version of two-step Prony algorithm 

with computation distributed among 5 Phase 
Data Concentrators (PDCs)

• Attack on Area 1 PMUs at iteration 𝑘 = 26
• Apparent decrease in estimated decay-rates 𝜎-

1 iteration = .2 sec

Estimation using resilient distributed  algorithm:
Spatial consistency:
• compute median of estimates across PDCs
• estimates that remain away from median by more 

than δ  cause PDC estimates to be ignored
Time consistency (across iterations)
• each PDC should not update its current estimates  

by more than 𝜖 per iteration
• changes larger than threshold cause PDC 

estimates to be ignored
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• A larger clock offset requires a finer quantization.
• Necessary conditions and sufficient conditions for 

stabilizability.

Uniform Quantizer
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Distributed Optimization Algorithm
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• The effect of the attack
is mitigated.

• Redundancy is crucial when 
detecting outliers!  
Less measurements, more 
vulnerable.

• The attack signal origin and
magnitude can be identified

Attacker alters the true measurements 
at iterations 20 and 60

Maximum Likelihood Estimation Regularization

2) At each node solve:

3) Broadcast estimation to neighbors.
4) Return to 1) if tolerance not met.

1) Exchange messages.

Additive attacks at
several nodes

• Devices exchange time-stamped 
messages between neighbors

• Time-of-flight measurements                                      
provide information about relative 
distance and clock parameters.

• Messages carry the current estimate          
of device position and clock 
parameters.

• Malicious agents can hijack some of
the messages and alter the estimate
or the timing information.


