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Graph-Theoretic
Analysis and Design

* Context: Decision-making in
infrastructures often
involves human operators,
who are sandwiched
between cyber and physical
assets.

Defend

Feature

 Goal: To develop a threat- Threats

assessment framework for
these Management-Coupled
Cyber- and Physical-
Infrastructures (MCCPIs).

Network

— Application: strategic air traffic Modeling
management.
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Air Traffic Management: Background

 Human decision-makers are responsible for guiding traffic, using cyber-

tools. Several scales:

— Trajectory guidance to pilots (air traffic control), Sector scale, minutes.
— Regional guidance (tactical management), Center scale, 0.5-2hours.
— Airspace-wide flow management (strategic), 2-15 hrs.

 Growing concern about "man-made” disruptions in addition to weather.
— Cyber failures and attacks, operator fatigue, new operational paradigms (space

vehicles, UAS)
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Network Modeling: Physical (Traffic)
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Network Modeling: Cyber

e Abstractly, operation of the air traffic system
depends on information flow between stakeholders.
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. * Disruptions to information flow/processing can impact traffic.

(Roy et al, 2016)



Cyber Network: AADL Modeling
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system GroundStation
end GroundStation;
system implementation GroundStation.impl
subcomponents
voice: device VoiceModule.impl;
modeSm: device ModeSModule.impl;
control: process control.impl;
connections
control_to_voice: port control.voice_out -> voice.from_control;
voice_to_control: port voice.to_control -> control.voice_in;
control_to_modeSm: port control.modeS_out -> modeSm.from_control;
modeSm_to_control: port modeSm.to_control -> control.modeS_in;

» B Plugin_Resources

end GroundStation.impl;

Ch LT == SRR A T A VR - ¢ B WER D
TADLN X = O ™ AirCraft ~ [JARTCC ~ ATC  AirCraft.aadl : ARTCC.aadl & ATC.aadl [
5 E v package ARTCC
» GAATC public



Management Coupling and Full MCCPI
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Threat Modeling by Modality

* Environmental Disruptions: Severe Weather
— Disrupts traffic flows, reduces capacities.

— Extensive literature in this area, key challenge is to capture
uncertainty.

— Stochastic automaton models that use commercially-available
forecasts, and identify capacity reductions (Xue et al 2012).
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Threat Modeling by Modality

e Cyber- attacks (sentient) and failures (natural)
— Full model: random-chance or percolation model in cyber layer.

— Diverse exploits: Aline Dispatch External data Center Offices
< Lt . Sources (e.g., Tr afflc
phlshlng, denial-of- ‘ NOAA). network
service, false data BD
Delta
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— Reduced model: impact capacities, flows, demand patterns, and
controls in physical layer. _ _gionina) Flowe

— Gain information :
about flows/controls.
— May aim to control,
learn, disrupt.

— Reduction?
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Response Frequency —

Threat Modeling by Modality

 Human-in-the-loop threats: fatigue increases variability and
duration of delay (d), and probability of incorrect delay
(e_prob).
— One-choice diffusion-model is predictive of variability
— SNR formulation facilitates network analysis (Chavali et al, 2016).

 These threats may affect capacities and flow densities in the
airspace system. 2
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A Trust Layer

A defender’s perspective: understanding the
trustworthiness of measured data.

— Need to be able to differentiate between legitimate
operational changes, impacting threats, and data
manipulation.

* Exploring trust models that capture:
— Fidelity of sensors
— Laws governing physical-world behaviors.

* A double-weighted approach is being pursued.



An Application-Independent
Framework

 Multi-time-scale layered network model for MCCPI dynamics, e.g.:
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* Broadly, threats: 1) actuate the dynamics, 2) change network-
model parameters, or 3) alter observations.

* Assessment metrics: targeted manipulability/controllability,
observability, disruptiveness, trust, privacy (coming soon).

* Assessment principle: Attacks have propagative impact across
cyber, physical, and human components of an MCCPI. Assessment
requires understanding this.

— Can be evaluated through simulation.

— Or, we can develop graph-theoretic insights which enable defense and
mitigation.



Flow Disruption

Assessment Tools: i
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Assessment Tools: Feature

e Understand what features of the network decide overall

vulnerability.
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Assessment Tools: Defend

 Statistical techniques for detection of
anomalies and attacks.

— Ratio of the harmonic mean (HM) and arithmetic

mean (AM) is an interesting scale-free measure,
that enables lightweight detection of anomalies.

— Tests using power-meter data show ability to
differentiate several type of false-data attacks.

(Bhattacharjee et al, 2016)



HM/AM Ratio-based detection

Real Data sets from Light Intensity Sensors and Smart Meter Power Consumptions
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Assessment tools: Defend

e Jump-Markov approximations for statistical
evaluation and design of traffic management

initiatives.

* Smart simulation techniques for evaluation of
and design against uncertainties.

— Based on the probabilistic collocation method.

* The methods have proved effective for
designing against severe weather.

— Next task: addressing cyber and human

disruptions.
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Broader-Impact Activities

Dissemination to transportation practitioners (FAA, NASA,

DHS, airlines).

Cross-domain application to the electric power industry.

loT applications (anomaly detection and resident-location-
catered control for HVAC) : student training.

4) Course material development.
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Challenge:

Scientific Impact:

* Incritical infrastructures
(e.g. the air traffic network),
threats have wide-area
propagative impacts across
cyber, physical, and human
components.

* Need to assess and manage
threats!

Airline Dispatch
Offices External data

| Sources (eg,
[ NOAW).
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Solution:

Development of layered
network models; cyber,
cognitive, and environmental
threat models; and sparse
network control theory for
assessment.

Tools and software for air
traffic management.
These can be ported to other

infrastructures, and Internet-
of-Things applications.

*  Model management-
coupled cyber and
physical infrastructures.

* Represent threats

* Assessment tools: target,
feature, and defend

Decision graph
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Washington State U. (CNS-1545104),
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Broader Impact:

Improve response to cyber
and fatigue events in the air
traffic system (6-10 such
events over last year!)

- Pursuing Technology transfer.
Student training on loT, and
course curriculum
development.

Power-system applications.



