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•  Context:	Decision-making	in	
infrastructures	oDen	
involves	human	operators,	
who	are	sandwiched	
between	cyber	and	physical	
assets.	

•  Goal:	To	develop	a	threat-
assessment	framework	for	
these	Management-Coupled	
Cyber-	and	Physical-	
Infrastructures	(MCCPIs).	
–  ApplicaGon:	strategic	air	traffic	

management.	
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Air	Traffic	Management:	Background	
•  Human	decision-makers	are	responsible	for	guiding	traffic,	using	cyber-	

tools.		Several	scales:	
–  Trajectory	guidance	to	pilots	(air	traffic	control),	Sector	scale,	minutes.	
–  Regional	guidance	(tacGcal	management),	Center	scale,	0.5-2hours.	
–  Airspace-wide	flow	management	(strategic),	2-15	hrs.		

•  Growing	concern	about	``man-made”	disrupGons	in	addiGon	to	weather.	
–  Cyber	failures	and	aWacks,	operator		faGgue,	new		operaGonal	paradigms	(space	

vehicles,	UAS)		



Network	Modeling:	Physical	(Traffic)	

Flow	and	Queueing	Model	
(Y.	Wan	et	al,	2012)	 RC	Circuit	ApproximaAon	



Network	Modeling:	Cyber	
•  Abstractly,	operaGon	of	the	air	traffic	system	
depends	on	informaGon	flow	between	stakeholders.	

•  DisrupGons	to	informaGon	flow/processing	can	impact	traffic.	
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Cyber	Network:	AADL	Modeling	

Air	Route	Traffic	Control	Center	Model	

Example		
AircraD	Model	



Management	Coupling	and	Full	MCCPI	

(e_prob,	delay)	
Full	dynamics	is	a	mulG-scale	
layered	network	model	(Dhal	
et	al,	submiWed,	2016)	

Decision	graph	



Threat	Modeling	by	Modality	
•  Environmental	DisrupGons:	Severe	Weather	

–  Disrupts	traffic	flows,	reduces	capaciGes.	
–  Extensive	literature	in	this	area,	key	challenge	is	to	capture	

uncertainty.	
–  StochasGc	automaton	models	that	use	commercially-available	

forecasts,	and	idenGfy	capacity	reducGons	(Xue	et	al	2012).	

 
Figure 5.  SREF forecast on 9/26/10 at 0500 EDT for 4, 8, 12, and 16 hours LAT 
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Threat	Modeling	by	Modality	
•  Cyber-	aWacks	(senGent)	and	failures	(natural)	

–  Full	model:	random-chance	or	percolaGon	model	in	cyber	layer.	
–  Diverse	exploits:	
					phishing,	denial-of-	
					service,	false	data	
					injecGon.		
	

–  Reduced	model:	impact	capaciGes,	flows,	demand	paWerns,	and	
controls	in	physical	layer.		
–  Gain	informaGon	
about	flows/controls.	
–  May	aim	to	control,	
learn,	disrupt.	
–  ReducGon?	
	
	



Threat	Modeling	by	Modality		
•  Human-in-the-loop	threats:	faGgue	increases	variability	and	

duraGon	of	delay	(d),	and	probability	of	incorrect	delay	
(e_prob).	
–  One-choice	diffusion-model	is	predicGve	of	variability	
–  SNR	formula?on	facilitates	network	analysis	(Chavali	et	al,	2016).	

•  These	threats	may	affect	capaciGes	and	flow	densiGes	in	the	
airspace	system.	

Decision	graph	



A	Trust	Layer	
•  A	defender’s	perspecGve:	understanding	the	
trustworthiness	of	measured	data.		
– Need	to	be	able	to	differenGate	between	legiGmate	
operaGonal	changes,	impacGng	threats,		and	data	
manipulaGon.		

•  Exploring	trust	models	that	capture:	
–  Fidelity	of	sensors	
–  Laws	governing	physical-world	behaviors.	

•  A	double-weighted	approach	is	being	pursued.	



An	ApplicaGon-Independent	
Framework	

•  MulG-Gme-scale	layered	network	model	for	MCCPI	dynamics,	e.g.:	

[█​𝑥↓𝑡 [𝑘+1]@​𝑥↓𝑐 [𝑘+1] ]=[█​𝐺↓𝑡𝑡 ( ​Γ↓𝑡 )&​𝐺↓𝑐𝑡 ( ​
Γ↓𝑐𝑡 )@??&​𝐺↓𝑐𝑐 ( ​Γ↓𝑐 ) ][█​𝑥↓𝑡 [𝑘]@​𝑥↓𝑐 [𝑘] ]+
[█0@​𝐵↓𝑐  ]𝑢[𝑘]	

•  Broadly,	threats:	1)	actuate	the	dynamics,	2)	change	network-
model	parameters,	or	3)	alter	observaGons.	

•  Assessment	metrics:	targeted	manipulability/controllability,		
observability,	disrupGveness,	trust,	privacy	(coming	soon).	

•  Assessment	principle:	AWacks	have	propagaGve	impact	across	
cyber,	physical,	and	human	components	of	an	MCCPI.	Assessment	
requires	understanding	this.	
–  Can	be	evaluated	through	simulaGon.	
–  Or,	we	can	develop	graph-theoreAc	insights	which	enable	defense	and	

miGgaGon.	
•  Target,	Feature,	and	Defend.	



Assessment	Tools:		
Target	

•  IdenGfy	where	the	network		
			is	suscepGble	to	aWack.	

Via	simulaAon	

Via	a	graph-theoreAc	metric.		
Major	flows	with	few	uncongested	
alterna?ves	are	vulnerable.			



Assessment	Tools:	Feature	
•  Understand	what	features	of	the	network	decide	overall	

vulnerability.	

Uncongested	network	 Congested	network	with	criAcal	flows	



Assessment	Tools:	Defend	

•  StaGsGcal	techniques	for	detecGon	of	
anomalies	and	aWacks.	
– RaGo	of	the	harmonic	mean	(HM)	and	arithme?c	
mean	(AM)	is	an	interesGng	scale-free	measure,	
that	enables	lightweight	detecGon	of	anomalies.	

– Tests	using	power-meter	data	show	ability	to	
differenGate	several	type	of	false-data	aWacks.	

	
(BhaXacharjee	et	al,	2016)	



HM/AM Ratio-based detection 
Real Data sets from Light Intensity Sensors and Smart Meter Power Consumptions 

(a) Additive : 70% compromised             (b) Deductive: 60% compromised  

(a) Camouflage : 60% compromised        (b) Conflict : 40% compromised  

Emulated Attacks 
using real data set  
fed to simulated 
network 

Clear Difference 
between trust score 
of compromised 
and honest sensors 



Assessment	tools:	Defend	
•  Jump-Markov	approximaGons	for		staGsGcal	

evaluaGon	and	design	of	traffic	management	
iniGaGves.	

•  Smart	simulaGon	techniques	for	evaluaGon	of	
and	design	against	uncertainGes.	
–  Based	on	the	probabilisGc	collocaGon	method.	

•  The	methods	have	proved	effecGve	for	
designing	against	severe	weather.	
–  Next	task:	addressing	cyber	and	human	

disrupGons.	



Broader-Impact	AcGviGes	
1)  DisseminaGon	to	transportaGon	pracGGoners	(FAA,	NASA,	

DHS,	airlines).	
2)  Cross-domain	applicaGon	to	the	electric	power	industry.	
3)  IoT	applicaGons	(anomaly	detecGon	and	resident-locaGon-

catered	control	for	HVAC)	:	student	training.	
4)  Course	material	development.	
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ScienAfic	Impact:		
•  Development	of	layered	

network	models;	cyber,	
cogniGve,	and	environmental	
threat	models;		and	sparse	
network	control	theory	for	
assessment.			

•  Tools	and	soDware	for	air	
traffic	management.	

•  These	can	be	ported	to	other	
infrastructures,	and	Internet-
of-Things	applicaGons.	

SoluAon:		
•  Model	management-

coupled	cyber	and	
physical	infrastructures.	

•  Represent	threats	
•  Assessment	tools:	target,	

feature,	and	defend	

Challenge:		
•  In	criGcal	infrastructures	

(e.g.	the	air	traffic	network),	
threats	have	wide-area	
propagaGve	impacts	across	
cyber,	physical,	and	human	
components.	

•  Need	to	assess	and	manage	
threats!	

Broader	Impact:		
•  Improve	response	to	cyber	

and	faGgue	events	in	the	air	
traffic	system	(6-10	such	
events	over	last	year!)	
–  Pursuing	Technology	transfer.	

•  Student	training	on	IoT,	and	
course	curriculum	
development.	

•  Power-system	applicaGons.	
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