

Collaborative Research: CPS: Medium: Timeliness vs. Trustworthiness: Balancing Predictability and Security in Time-Sensitive CPS Design

Thidapat (Tam) Chantem[†], Nathan Fisher[‡], Ning Zhang^{*}, Cong Liu^{*}, and Ryan Gerdes[†]

Challenges:

- The lack of a single system-level security metric to optimize for
- The difficulty in securing —The scheduling infrastructure
- -The real-time tasks
- Unknown/imprecise threat models at design time and/or unknown/ unforeseen vulnerabilities

Solution:

- Secure the fundamental real-time components from the ground up and to the extent possible on resourceconstrained RT·CPS
- Quantify the cost of security and create a real-time scheduling/security co- design framework that determines, on-the-fly, when and how to use the secure real-time components and/or appropriate
- Enable incremental system recovery

Award # 2038726, 2038609, 2038995, 2038727 (02/02/21) [†]Virginia Tech, [‡]Wayne State University, ^{*}Washington University in St. Louis, [°]U. of Texas at Dallas, <u>tchantem@vt.edu</u>

<u>Prevent</u>		Lightweight Secure Task Execution	
Hardened Infrastructure Secure I/O	Ready Queue		Confidentiality Mechanisms Integrity Mechanisms
Scheduler	Waiting Queue	J ₂	

Scientific Impact:

- Enable secure RT·CPS that is
- Less complex
- Easier to analyze
- Resilient in face of external and/or uncontrolled changes to the system and/or physical environment
- Proactively prevent attacks using moving target defense, as well as detect and recover from attacks that cannot be avoided.

Broader Impact:

- Research applicable to defense, medicine, transportation, manufacturing, agriculture domains, etc.
- Can be leveraged to address unintentional faults such as aging
- Improved trust in automated systems by, and quality of life of, users
- Course modules and red-teaming exercises for undergraduate students and interactive learning modules and internship experience for K-12 students