Timing Based Security in Real-Time Systems: T-SYS & T-Pack Brayden McDonald & Swastik Mittal

NC State University North Carolina State University Advisor: Dr. Frank Mueller

Motivation

- ➤ Real-time systems
- Timeliness considered part of correctness
- Predictability over performance
- Execution time analysis is part of development
- Common example: cyberphysical systems
- > Attacks against real time systems
 - Increasing threat
 - Computers more ubiquitous than ever
 - Attackers can subvert or damage critical infrastructure
- Susceptible to delay attacks
 - Delay intended execution time of real-time system
 - Network attacks
 - Denial of service attack leads to network delay

T-SYS Results

T-Pack

Background

Minimum Observed Attack Vulnerability vs MaxVuln

Minimum Observed Attack Vulnerability vs MaxVuln

within one region

A3:P(

• Linux vs Preempt-RT Linux (Raspberry Pi 3)

- Latency Difference between thread wake up call vs actual thread wake up time
- Preempt-RT Linux: higher average latency, but **no outliers**

Solution

≻ T-Sys

- Intrusion detection in real-time systems using timing anomalies
 - Automatic compiler-based integration
- Configure protection/performance tradeoff using user-defined *maxvuln* parameter
- Able to detect 100% of attacks where duration exceeds *maxvuln*

➤ T-Pack

• Timed network security framework to detect intrusion on the network

- Intrusions leading to unwanted delay of useful packets.
- Able to detect 100% of the DDOS attack of minimal intensity with a minimum cost overhead.

426710 813607 642774 609665 562184 481264

- intensity applied
- Packet protected with IPSec encryption
- T-Pack compatible with other security
- protocols Attack Vector P(n,t,b,i) (ping of death)
- n attack nodes
- t parallel threads each
- b bytes of attack packet
- i seconds time interval
- > 100% of delay attacks resulting in min RTT above red

T-SYS Insert instrumentation points into target • track progress through a known > Set up deadline at each point

- Must reach next point by deadline > If deadline is missed, assume intrusion • system goes to safe mode
- Maximum allowed deadline value called MaxVuln
- MaxVuln set by user

execution path

codebase

enchmarks	for	different	values	of	MaxVı	ıln.

MaxVuln (µsec)	unprotected	100	200	300	400	500
navigation	614	1162	921	863	821	685
servo_transmit	186	262	199	201	197	198
autopilot	292	426	385	342	301	305
context_switch	157	197	176	157	158	156
mutex_acquire	245	297	278	246	244	245
mutex_release	221	271	245	223	221	220

Table 1: Average execution time (in μ sec)

and kernel paths for different values of

> We compare T-SYS to a state-of-the-art timingbased security system (Bellec): • Total regions created • Total regions entered during execution Bellec algorithm is not elastic • only one MaxVuln value • Comparison uses multiples of this value > T-SYS creates fewer regions T-SYS enters regions less frequently during execution

4AW	Bellec	1-515	(0.5x)	(2x)	(5x)
9007				()	(34)
2007	36	31	74	23	6
1210	47	34	68	17	11
1117	41	38	72	19	12
274	15	9	17	5	2
2970 21		19	34	13	7
3155	32	26	49	18	10
614	25	23	62	14	9
8001	18	16	28	9	5
121	5	5	9	3	1
93	3	3	5	1	1
134	7	6	10	4	1
	1210 1117 274 2970 3155 614 8001 121 93 134	1210 47 1117 41 274 15 2970 21 3155 32 614 25 8001 18 121 5 93 3 134 7	1210 47 34 1117 41 38 274 15 9 2970 21 19 3155 32 26 614 25 23 8001 18 16 121 5 5 93 3 3 134 7 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5	223	221	220						
of	f Papa	aBenc	h tasl	cs					
М	axVu	ln.							
	Task		Base MAV	V Bell	ec T	C-SYS	T-SYS (0.5x)	T-SYS (2x)	T-SYS (5x)
	adper	n	900	7 142	56 1	2275	24912	6240	1504
	lms		121	0 4	07	351	906	241	191
	fft		111	7 20	17	1736 3302		960	580
	cnt		27	4 53	34	498	1011	278	101
statemate		297	0 7	91	754	1294	452	239	
edn		315	5 11	25	1052	1926	618	348	
	qsort	exam	61	4 9	71	956	1835	572	320
	st		800	1 64	40	601	1209	384	198
	navig	ation	12	1 5	21	513	1017	221	71
S	servo	_transmi	it 9	3 3	12	254	531	61	61
	autop	ilot	13	4 54	48	457	1102	246	87
6 1 2	Table / ber of	4: Com region	parison s entere	ı of Bel ed duri	lec va ng ex	s T-SY cecuti	'S algor ion.	ithms, I	by nun
2 7 0 9									
-	Nice	lag Dal		an Dala		and In	ala alla Da	200	0

Nicolas Bellec, Simon Rokicki, and Isabelle Puaut. 2020. Attack detection through monitoring of timing deviations in embedded real-time systems. In ECRTS 2020 - 32nd Euromicro Conference on Real-Time Systems. Modena, Italy, 1–22.

	0	A1	A2	A3	A4	A5	A6	A7	 line detected ○ Worst case RTT for no attack (A1) > Vulnerability of T-Pack
1,1	Resu 0,500,0	lt: No att).1), A4:I	ack A1:F P(2,10,5 A7:	P(0,0,0,0 00,0.1), :P(2,30,	0), attacl A5:P(2, 1000,0.0	ks A2:P(30,500,(001	1,10,50 0.05):, A	0,0.5), 6:P(2,10,500	 Delay attacks with minimal intensity not always detected A2 not detected by T-Pack

Publications

- ➤ T-SYS: Timed-Based System Security for Real-Time Kernels, by B. McDonald and F. Mueller International Conference on Cyber-Physical Systems (ICCPS), May 2022
- > T-Pack: Timed Network Security for Real Time Systems Swastik Mittal, Frank Mueller in IEEE International Symposium on Real-Time Computing (ISORC), May 2021
- CLAIRE: Enabling Continual Learning for Real-time Autonomous Driving with a Dual-head Architecture Hao Zhang, Frank Mueller in IEEE international Symposium on Real-Time Computing (ISORC), May 2022

Acknowledgements

This work was supported in part by NSF grants 1813004 and 1525609

