Tool Library Workshop

Marcus Lucas and Paulo Tabuada

Cyber-Physical Systems Laboratory
Department of Electrical and Computer Engineering
University of California at Los Angeles

Background

- Algorithm verification is vital to the development of cyber-physical systems
 - Safety Critical
 - Expensive to test
 - Difficult to reason about
- Verification tools are generally good for the research community
 - Aids reproducability of results
 - Facilitates benchmarking
 - Improves quality of research/knowledge dissemination

Issues

- But verification can be a lot of extra work
 - Finding, understanding, and then using tools is non-trivial
- System designers need to better understand verification and what types of problems can be verified
- Low level of knowledge and confidence regarding existing tools
- Design process is not understood in terms of verification

Goals

- Embed verification into the engineering design process as a first-order objective
- Communicate the circumstances under which verification should be applied
- Normalize the publication and support of tools created by community members
- Grow confidence in verification's utility

How to Get There?

- Reduce barriers to entry through the CPS-VO
 - Tool Repository
 - Tutorials
 - Integrated tools
- Encourage student engagement
- Create benchmarks and standard models for evaluating tools

- VTL documents mature tools available to the CPS community
- Searchable by taxonomic terms and includes a wiki
- Links to tutorials, integrated tools, more thorough documentation

Repository Demo

- Tool Library: https://cps-vo.org/group/verification_tools/
- Submission Form: https://cps-vo.org/group/tools/submit

- SpaceEx
 - Only handles hybrid systems with affine continuous dynamics
 - Particularly accessible to high-school & undergraduate students
- CORA
 - Formal verification of non-linear systems
- S-TALIRO
 - Falsification of logical constraints

Autonomous Parking Example

 Finding and following parking trajectories is a basic requirement of autonomous cars

Autonomous Parking Example

Kinematic Bicycle Model of Car

■ What if you have a valid trajectory, and want to test if your controller tracks it properly?

SpaceEx

 SpaceEx can be used to evaluate simple control problems such as stabilizing to a horizontal trajectory.

Tutorials CORA

■ CORA can do the same thing

Tutorials CORA

But it is also capable of analyzing non-linear systems, making it much more useful for verifying systems like the full parking controller.

Tutorials S-TALIRO

 S-TALIRO does not provide formal guarantees, but can be used to falsify the same classes of problems

Embedded Tools

■ Currently have SpaceEx running

Running Tools on the CPS-VO

SpaceEx Example

SpaceEx Demo

Student Engagement

- Want to normalize the use of verification tools in design process
- Targeting undergraduate and even high-school students
- Ideal tools integrate easily with familiar software (i.e. Matlab/Simulink)

Future Work

Benchmarks

- We're announcing a new benchmarking competition!
- Expansion of the "Friendly Competition" held during the ARCH Workshop
 - https://cps-vo.org/group/ARCH
- Tentative structure:
 - Participants integrate verification/synthesis tools into VO
 - Test period of about a month
 - Competition organizers evaluate tools against benchmarks using VO resources
- Competition results will be advertised through the CPS-VO

