Toward a Test Bed for Heavy Vehicle Cyber Security Experimentation

Rose Gamble, Jeremy Daily, University of Tulsa (#1619690) Indrakshi Ray, Colorado State University (#1619641)

Can a bus or truck be hacked? If so, can a whole fleet be hacked? What role does the smart highway play in truck or fleet vulnerability? What test beds are needed to allow experiments to assess vulnerability?

• Challenges

- Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems
- Many cyber security experts and analysts are used to working with traditional IT networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector

Research Objectives

- Prototype a remotely accessible testbed using actual hardware, sensor simulation, CAN, and J1939
- Exploit the openness of the CAN network and the J1939 protocol specifications
- Experiment with attack vectors, such as the potentially vulnerabilities related to telematics units
- Investigate the capability needs of an intrusion detection system

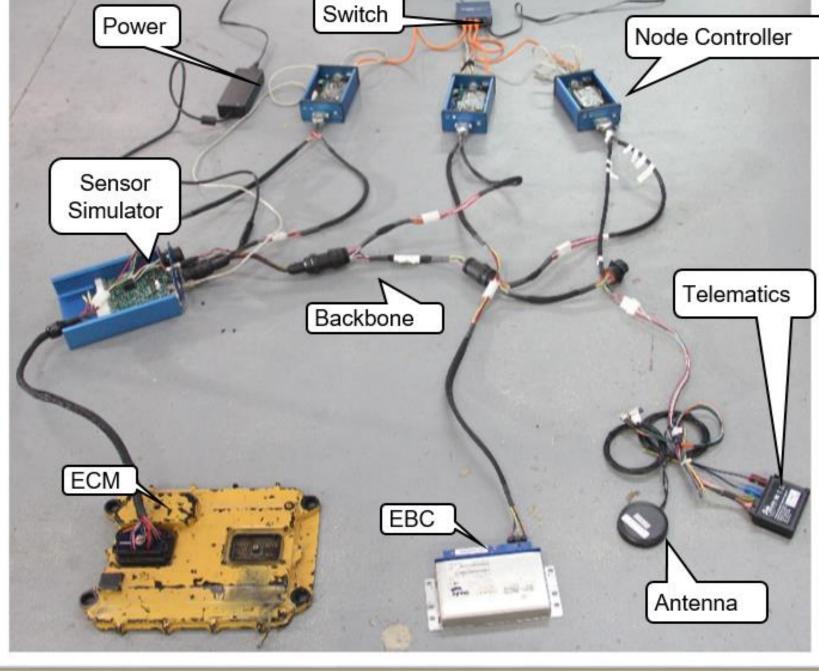


Fig. 1: Layout of a remotely accessible test bed

Web Interface Input Experiment Display History options Testbed Reservation
Experiment ProcessingAuthenticationExperiment parametersHistory parametersReservation parameters
Experiment Model Experiment History results Reservation data Logic Model results History results Reservation data
CAN Data Processor Traffic injection messages ECU interaction Node controller configuration
J1939 and
Experiment Database

Fig. 2: Software Architecture of the Remote Interface to the Testbed

Approach

- Construct the physical test bed with an engine control module (ECM), an electronic brake controller (EBC), and a telematics unit through sensor simulator to a CAN network using the J1939 protocol.
- Create the remote interface to the test bed to additional experimentation
- Establish if the J1939 protocol is exploitable by perform attacks that are similar to those which have been executed on the OSI layer protocols.
- Investigate Bluetooth data transmission
 vulnerabilities and determine if the same attack
 vectors exist with telematics units.
- Use the test bed to simulate the functions the ECUs to control attack experiments.
- Open the test bed to external researchers for investigation

Current results

- Test bed and remote interface prototyped
- Can sniff Bluetooth traffic, follow a connection from the telematics unit to a driver's cell phone, and decode the packets
- Demonstrated 3 specific denial-of-service attacks using the J1939 data-link layer request and connection management protocols.

Ongoing work

- Build out the test bed with additional electronic control units
- Fully implement the remote interface
- Identify attacks that can act as a motivation to extend the current logic for in-vehicular IDS
- Use any vulnerabilities found to create additional mitigation strategies and uncover new directions to vehicular security research.

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting

January 9-11, 2017 Arlington, Virginia