Toward a Test Bed for Heavy Vehicle Cyber Security Experimentation

Challenge:

- SAE J1939 protocol exploited for attacks
 - Heavy vehicles deploy SAE
 J1939 over the CAN (physical)
 layer
 - Fleet managers often install 3rd party telematics units
 - Increased attack surface
- Anomaly detection
 - Eliminate false positive rate if possible
 - Adapt to J1939 specifications
 - Provision for detecting 0-day attacks
 - Be dynamic
- Deployment difficulties
 - Limited hardware resources
 - Timing constraints

Solution:

- Stateful Approach
 - Model vehicle behavior using modes and events
 - Detect anomalies/deviations from documented state flow
- Data Mining Technique
 - Time-series analysis
 - Online learning technique
 - Reduced feature-set
 - Detect outliers based on currently established model
- Implementation in vehicular coding standards
 - MISRA C
 - Machine Level Programming

Scientific Impact:

- New intrusion detection techniques on broadcast domains
- New intrusion detection techniques for network layers above CAN (physical)
- New techniques for modeling driver behavior

Broader Impact:

- Increased assurance for drivers and fleet management
- Applicable for domains using J1939 protocols
 - Agriculture and Mining
 - Backup Generators
 - Industrial automation
 - Marine through NMEA 2000
- Driver modeling efforts usable in future projects
- Industry specific cyber security talent generation