Towards Dexterous Micromanipulation

David J. Cappelleri, Song Zhang, Karthik Ramani School of Mechanical Engineering Purdue University, West Lafayette, IN

Top Camera

Motivation

- Perform fundamental research related to transitioning robotics manipulation from the macro-scale to the micro-scale
- Lay the foundations for new micro-robotic tools

Micromanipulation Using a Learned Model

Testbed

Goal

- Learn how to manipulate micro-parts
- Challenge: Multi-contact problem, friction, interaction dynamics at micro-scale is difficult to model

Micromanipulation Model

- Multi-target regression problem
- Gradient Boosting algorithm applied • Input: initial and final configuration of part
- Output: Probe initial and final positions
- Separate model for each manipulator
- Contact modelled as a point contact

Vision-Based Micro-Force Sensing

Concept

Micromanipulator

Goal 1 Develop a new class of manipulation probes for use as 3D vision-based micro-force sensors (μVBFS)

Fabrication & Assembly

Experimental Results

Case Study: Micromanipulation Substrate Design

- Study of the pushing forces required to manipulate micropart
- Three substrates were tested: glass slide, glass slide cleaned with IPA, glass slide with a thin hydrophobic gold layer
- Hydrophobic gold layer is the best at reducing uncertainties

Preliminary Experiments

2D images with different ELT settings

All in-focus stacked image (3 mm)

Rough 3D depth from ETL

- Goals Develop haptic tools/skins to accurately relay micro-scale manipulation forces to the teleoperator
- Capture manipulation and force data to develop new autonomous micromanipulation primitives

Haptic Tools μForce Feedback VR System

μForce Feedback Manipulator & Part states

Scaled Manipulator Commands

Manipulator states

Desired

Multimodal Soft Sensor/Actuator Concept

Micromanipulation System/Simulator **Motion Primitive** Library

Embedded Haptic Skin into Interaction Tool

Virtual Reality System

Outreach

Toy Design Workshop

- Two-week workshop for students in grades 7 and 8
- Combination of lecture-based and project-based classroom exercises
- Final team project Storytelling Challenge incorporating at least 1 prior topic covered

Topics covered:

- How to sketch
- Strength of Materials
- Reverse Engineering
- Simple Vector Analysis
- Forces
- Newton's Laws of Motion
- CAD & Rapid Prototyping
- Basic Circuit Analysis

Goal 2

 Develop a multi-resolution 3D vision-system to provide sub-diffraction limit tracking for sensing in the micro-teleoperation and augmented/virtual reality system

Prototype System

- Camera and projector system
- Two electrically tunable lenses (ETL)
- Electronic synchronization between the camera and the projector
- The depth of field (DOF) of the system ranges from 300 µm to approximately 3 mm
- Able to resolve approximately 300 nm depth changes for diffuse white surface
- System spatial resolution ($\sim 2.3 \mu m$), field of view (~ 4.4 mm x 2.9 mm), and depth resolution (~300 nm) meet the desired performance

Resolution Verification

mean:13.9, std:0.3 um mean:8.5, std:0.3 um mean:4.4, std:0.3 um

mean:0.0, std:0.0 um 1000 1200 1400

Next steps: develop software algorithms to

- Stack 3D images with different ETL settings to create an all-in-focus 3D image
- Achieve autofocus for the multi-resolution 3D imaging system Improve data capturing and processing

speed to achieve real-time performance

