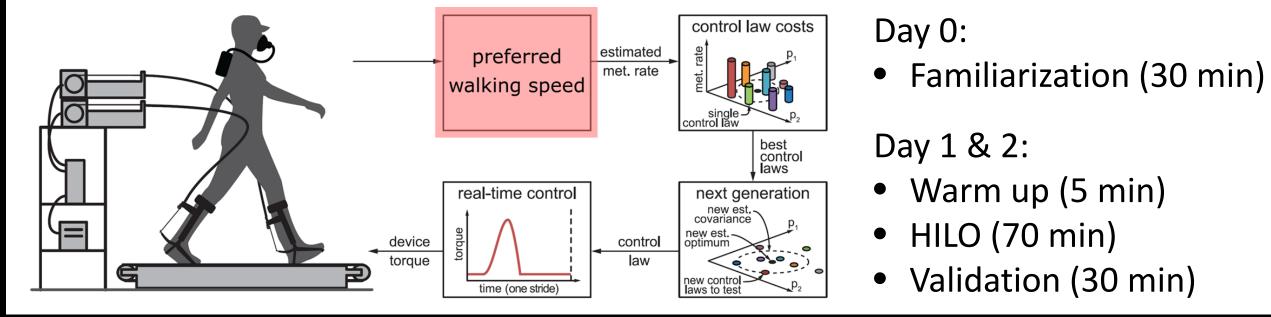
Towards optimal gait assistance: human-in-the-loop optimization & neuromechanical simulation

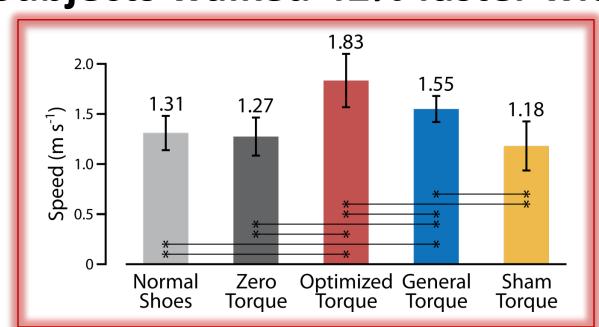
Seungmoon Song, Stanford University (Pls: Chris Atkeson & Steve Collins) https://biomechatronics.stanford.edu/ smsong@stanford.edu

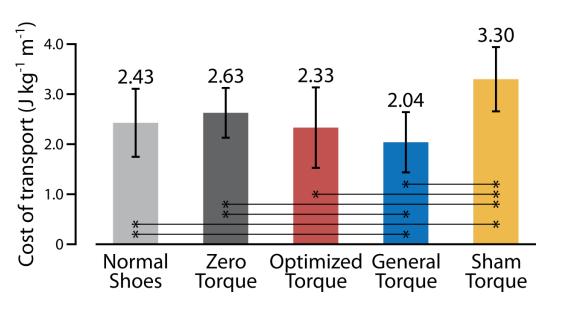
Human-in-the-loop optimization of ankle-exoskeleton assistance for faster walking speed

Question: Can ankle assistance increase walking speed? **Background:**


Neuromechanical simulation to predict gait adaptation

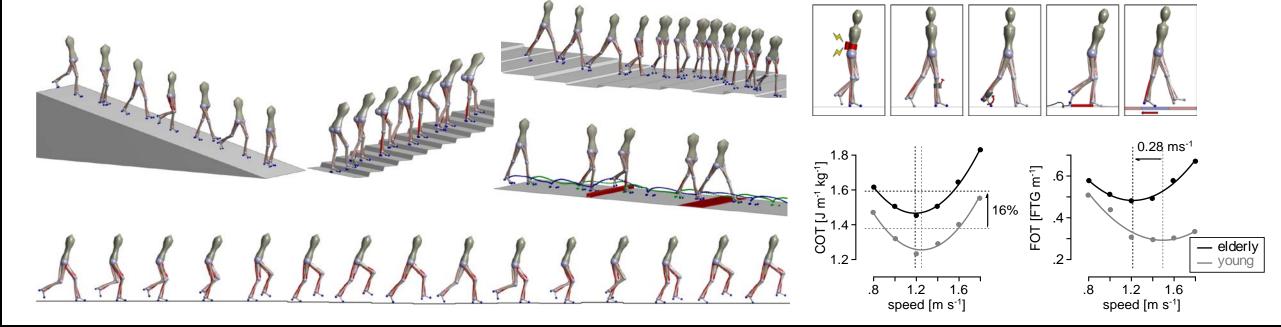
Goal: Model neuro-musculo-skeletal dynamics of locomotion & predict gait behavior in novel environment

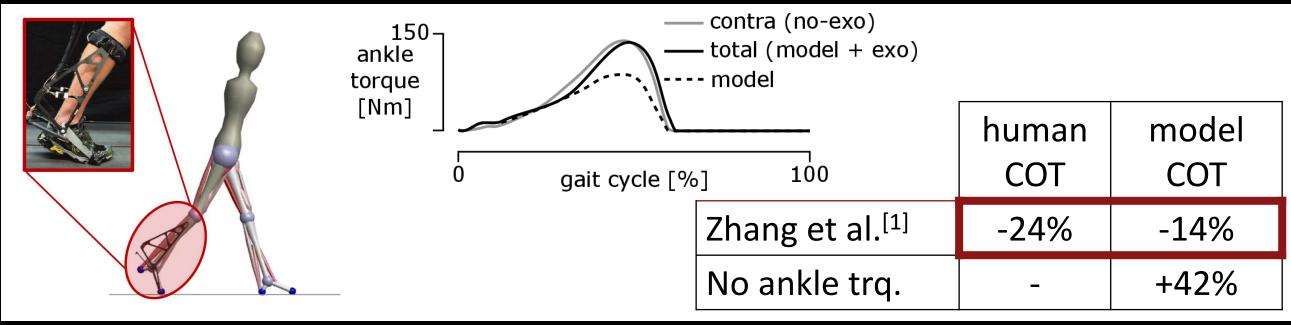

Background: Testing exoskeleton assistance involves extensive


- Human-in-the-loop optimization (HILO) with ankleexoskeletons successfully reduce metabolic energy cost^[1]
- Preferred walking speed can be measured on a self-paced treadmill^[2,3]

Our approach: Apply HILO to find ankle assistance torques that increase preferred walking speed

Results (N=10)




human experiments (e.g. weeks of training for adaptation) **Our approach: Develop predictive simulation framework**

Our current neuromechanical model:

- Generates human-like diverse locomotion behaviors^[5]
- **Reacts to a range of perturbations similarly to humans**^[6]
- Explains why older adults walk slower^[7]

Extension for ankle-exoskeleton assistance

Learn to Move^[8,9]:

Subjects walked 42% faster with torque optimized for speed!

Future direction

Include expert and prior knowledge in HILO

Multi-objective HILO

- **Metabolic COT**
- Speed
- Stability^[4]

Apply to older adults with low walking speed

Broader Impact

Quality of life in population with slow gait

Older adults, post-stroke, etc.

Understanding human gait adaptation to assistive devices

Reinforcement learning + neuromechanical simulation

Task: Control a 3D musculoskeletal human model to

302 teams: **1448** solution and **5** paper submissions

follow velocity commands with minimum effort

Top **3** succeeded in following target velocities

We organized a simulation competition @ NeurIPS 2019

- Neuromechanical Environment State, Action Reward Mission: Bridge neuroscience, biomechanics, robotics, and machine learning
- **Broader Impact**

Simulation tool for developing optimal gait training and assistive devices

Educational platform for human biomechanics and reinforcement learning

[1] Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson & Collins. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017. [2] Song, Choi & Collins. Using force data to self-pace an instrumented treadmill and measure self-selected walking speed. submitted.

[3] https://github.com/smsong/self-paced-treadmill

[4] Kim, & Collins. Once-per-step control of ankle push-off work improves balance in a three-dimensional simulation of bipedal walking. IEEE Transactions on Robotics. 2017.

[5] Song & Geyer. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. The Journal of physiology. 2015.

[6] Song & Geyer. Evaluation of a neuromechanical walking control model using disturbance experiments. Frontiers in computational neuroscience. 2017. [7] Song & Geyer. Predictive neuromechanical simulations indicate why walking performance declines with ageing. The Journal of physiology. 2018. [8] Song, Kidzinski, Peng, Ong, Hicks, Levine & Delp. Learn to Move: deep reinforcement learning in neuromechanical simulations. in preparation.

[9] <u>https://www.aicrowd.com/challenges/neurips-2019-learn-to-move-walk-around</u>

Stanford ENGINEERING

Mechanical Engineering

2020 National Robotics Initiative (NRI) Principal Investigators' Meeting

FEBRUARY 27 - 28, 2020 ARLINGTON, VIRGINIA

Award ID#: CMMI-1734449

NRI: INT: Individualized Co-Robotics