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Towards optimal gait assistance:
human-in-the-loop optimization & neuromechanical simulation
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Human-in-the-loop optimization of
ankle-exoskeleton assistance for
faster walking speed

Question: Can ankle assistance increase walking speed?

Background:

* Human-in-the-loop optimization (HILO) with ankle-
exoskeletons successfully reduce metabolic energy cost!!]
Preferred walking speed can be measured on a self-paced
treadmilll23]

Our approach: Apply HILO to find ankle assistance torques that
increase preferred walking speed
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Subjects walked 42% faster with torque optimized for speed!
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Future direction
Include expert and prior knowledge in HILO

Multi-objective HILO
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Apply to older adults with low walking speed ™ 2 .. ey ™

Broader Impact

Quality of life in population with slow gait
 Older adults, post-stroke, etc.

Understanding human gait adaptation to assistive devices

https://github.com/smsong/self-paced-treadmill

https://www.aicrowd.com/challenges/neurips-2019-learn-to-move-walk-around

2020 National Robotics Initiative (NRI) Principal Investigators' Meeting

FEBRUARY 27 - 28, 2020 | ARLINGTON, VIRGINIA

Neuromechanical simulation to
predict gait adaptation

Goal: Model neuro-musculo-skeletal dynamics of locomotion
& predict gait behavior in novel environment

Background: Testing exoskeleton assistance involves extensive
human experiments (e.g. weeks of training for adaptation)

Our approach: Develop predictive simulation framework

Our current neuromechanical model:
e Generates human-like diverse locomotion behaviors!®!

e Reacts to a range of perturbations similarly to humans!®!
e Explains why older adults walk slower!’]
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Zhang et al.l1]

Learn to Movel32l:
Reinforcement learning + neuromechanical simulation

We organized a simulation competition @ NeurlPS 2019

Neuromechanical
Environment * Task: Control a 3D musculoskeletal human model to

follow velocity commands with minimum effort
302 teams: 1448 solution and 5 paper submissions

State, . . .

Reward e Top 3 succeeded in following target velocities

Mission: Bridge neuroscience, biomechanics, robotics,
and machine learning

Broader Impact

Simulation tool for developing optimal gait training and
assistive devices

Educational platform for human biomechanics and
reinforcement learning
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