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Objective

Cyber Physical System: Large scale interconnected systems with tight
coupling between physical dynamics, computational dynamics, and
communication networks.

Highly complex models at different levels and with complex
relationships between them.

Proposed solution: Finite state approximations for continuous models.

Automated analysis and design (Verification and Synthesis),

common language for continuous dynamics and software
implementation of control algorithms (Hybrid Systems),

framework for control over finite actuation and coarse sensing due to
network limitations.
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Passivity-Based Control Design for Cyber-Physical Systems

Advantages:

Robustness w.r.t. structural uncertainty,

Compositional property,

Orthogonality w.r.t. network effects,

Simplicity,...

Roadblocks:

Notion of Passivity for Finite State Approximations,

Finite state approximation methods that preserve passivity.

Compositionality for passive finite state approximations.
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3 Finite State Approximations and Passivity preserving
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Hybrid Input/Output Automaton

Hybrid Input/Output Automaton

A hybrid input-output automaton ΣH is comprised of the following
components

ΣH = {Q,Z ,F ,H, Init, Inv ,E ,G ,R},

where

Q is the set of discrete states,

Z = {U,Y ,X} is the set of continuous variables,

F = {fi} is the set of vector fields fi (·, ·) : X × U → Rn,

H = {hi} is the set of output equations hi (·, ·) : X × U → Rp,

Init ⊂ Q × X denotes the valid set of initial conditions,

Inv : Q → 2X denotes the portion of X where each q ∈ Q may be
active,

E ⊂ Q × Q is the set of all edges,

G : E → 2X is the guard set, and

R : E × X → 2X is the reset map for continuous state x ∈ X .
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Hybrid Input/Output Automaton

Dissipative Hybrid I/O Automata

ΣH is dissipative if for each mode qi ∈ Q there exists a storage function
Vi (x) such that

α(‖x‖) ≤ Vi (x) ≤ α(‖x‖)
for class-K functions α and α to satisfy the following conditions.

1 For all qi ∈ Q there exists a continuous energy supply rate
ωi
c : U × Y → R such that when qi is active between switching

instants tk and tk+1 ,

Vi (x(t2)) ≤ Vi (x(t1)) +

∫ t2

t1

ωi
c(u, y)dt, for tk ≤ t1 ≤ t2 ≤ tk+1.

2 There exists a discrete energy supply rate ωd : X × E → R such that
for each switching instant tk , where the transition can be denoted
e = (qi , qj),

Vj(x(t+
k )) ≤ Vi (x(t−k )) + ωd(x , e),

and the rate ωd is bounded by a class-K function W (x), ωd ≤W (x).
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Hybrid Input/Output Automaton

Passive Hybrid I/O Automata

ΣH is passive if it is dissipative with

ωi
c(u, y) = uT y , ∀qi ∈ Q

and if for all discrete mode switching times tk the discrete supply rate
satisfies

Tn∑
k=1

ωd(x−k , e) ≤ φd(t)

where φd(t) is absolutely integrable .
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Hybrid Input/Output Automaton

Stability Results for Dissipative Hybrid I/O Automata

Theorem

Consider an unforced (u(t) = 0, ∀t) hybrid input output automaton
ΣH such that

∀qi ∈ Q, dim(xi ) = n and

∃xe such that fi (xe , 0) = 0, ∀i .

If the following conditions hold for all executions and all times T where
a maximum of Tn switches occur in the time interval [t0,T ] :

for all modes qi ,
ωi
c(0, y) ≤ 0

and for each switching instant tk ,
∑Tn

k=1 ωd(xk , e) ≤ φd(t) where
φd(t) is absolutely integrable,

then ΣH is Lyapunov stable.
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Hybrid Input/Output Automaton

The feedback interconnection of two hybrid automata

Theorem

The feedback interconnection of two dissipative (passive) hybrid I/O
automata ΣH1 and ΣH2 where

ΣH1 = {Q(1),Z (1),F (1),H(1), Init(1), Inv (1),E (1),G (1),R(1)} and

ΣH2 = {Q(2),Z (2),F (2),H(2), Init(2), Inv (2),E (2),G (2),R(2)},

forms a dissipative (passive) hybrid I/O automaton Σ.
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Dissipativity for Finite State Automata

Finite automata

A finite automaton is defined by the five-tuple:
A = {Q,Σ, α, q0,F} where

Q is the set of discrete states,

E is the set of discrete events,

α : Q × Σ→ Q is the set of possible state transitions,

Q0 ⊂ Q is the set of initial states, and

Qe = F ⊆ Q is the set of final states.

Definition

An energy storage function V : Q → R+ for a finite automaton
A = {Q, E , α, q0,F} must satisfy

V (q) = 0 for all q ∈ Qe and

V (q) > 0,∀q ∈ Q\Qe .
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Dissipativity for Finite State Automata

Dissipativity and Stability of finite automata

Definition

A finite automaton A = {Q, E , α,Q0,F} is dissipative with respect to
supply rate ω(u, q) if there exists a energy storage function V such that
the following inequality holds ∀K ≥ 0,

K−1∑
k=0

ω(u(k), q(k)) ≥ V (q(K ))− V (q(0)).

Theorem

Consider a dissipative finite automaton with a desired equilibrium set
Qe . This finite automaton has energy storage function V (q) and a
supply rate ω(q, e). The equilibrium of the finite automaton is an
invariant set if ω(q, e) = 0 for all q ∈ Qe and all e ∈ E .

Shravan Sajja Towards Passivity based software synthesis 12/31



Finite State Approximations and Passivity preserving

Finite State Approximations [Tabuada 2012]

Definition (Control Systems)

A control system is a quadruple Σ = (Rn,U,U , f ) consisting of:

Rn is the state space;

U ⊆ Rm is the input space;

U : R→ U is a subset of the set of all locally essentially bounded
functions of time;

f : Rn × U → Rn is a continuous map satisfying the following
Lipschitz assumption.
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Finite State Approximations and Passivity preserving

Transition systems

Definition (Pappas, Tabuada)

A system S is a quintuple S = (X ,U,−−→,Y ,H) consisting of:

A set of states X ;

A set of inputs U;

A transition relation −−→⊆ X × U × X ;

An output set Y ;

An output function H : X → Y .

The state set X is equipped with a metric d : X × X → R+
0 .

‖x‖ represents the ‖x‖∞ unless specified otherwise.

Objective: Σ
preserving stability−−−−−−−−−−−−−→

preserving dissipativity
S with a countably finite set of states
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Finite State Approximations and Passivity preserving

Digital Control Systems as Transition Systems

Σ = (X ,U,U , f ) where

X := [c1, d1]× · · · × [cn, dn] ⊆ Rn for some ci < di , i = 1, 2, . . . , n.

U := [a1, b1]× · · · × [am, bm] ⊆ Rm for some ai < bi , i = 1, 2, . . . ,m.

Let µ̂ = mini=1,2,...,m |bi − ai | and η̂ = mini=1,2,...,n |di − ci |

Given τ > 0, we consider is: Uτ := {u ∈ U | u(t) = u(0), t ∈ [0, τ ]}.

Sub-transition system Sτ (Σ) := (Q1, L1,−−−−→
1

,O,H), where

Q1 = X ;

L1 = {l1 ∈ U| x(τ, x0, l1) is defined for all x0 ∈ X};

q1
l1−−−−→
1

p1, if x(τ, q1, l1) = p1;

O1 = X and

H1 = 1X . Sτ (Σ) is countable but not finite
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Finite State Approximations and Passivity preserving
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Finite State Approximations and Passivity preserving

Finite, Countable Transition Systems

Given a control system Σ, any τ > 0, η > 0 and µ > 0, a finite, countable
transition system can be defined as: Sτ,η,µ(Σ) := (Q2, L2,−−−−→

2
,O2,H2)

such that

Q2 = [X ]η;

L2 = [L1]µ;

q2
l2−−−−→
2

p2, if l2 ∈ L2(q2) and ‖p2 − x(τ, q2, l2)‖ ≤ η/2;

O2 = [X ]η

H2 = i : Q2 → O2

where A ⊆ Rn and µ ∈ R+,

[A]µ := {a ∈ A|ai = kiµ, ki ∈ Z, i = 1, . . . , n}.

If we define Bε(x) = {y ∈ Rn| ‖x − y‖ ≤ ε}, then Rn ⊆
⋃

q∈[Rn]µ
Bµ/2(q)
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Finite State Approximations and Passivity preserving

q2

p2

x

Figure : Principle for computation of Finite approximation
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Finite State Approximations and Passivity preserving

Figure : Example of a finite state approximation for a 2-D system [Tabuada 2012]
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Finite State Approximations and Passivity preserving

Approximate Simulation

Definition (ε-Approximate Simulation)

Let S1 := (Q1, L1,−−−−→
1

,O1,H1), S2 := (Q2, L2,−−−−→
2

,O2,H2) be

deterministic metric transition systems with the same sets of labels L and
outputs O equipped with the metric d. Let ε ∈ R+

0 be a given precision, a
relation R ⊆ Q1 × Q2 is said to be an ε-approximate simulation relation
between S1 and S2 if the following three conditions are satisfied:

(i) for every q1 ∈ Q1, there exists q2 ∈ Q2 with (q1, q2) ∈ R;

(ii) for every (q1, q2) ∈ R we have d(H1(q1),H2(q2)) ≤ ε;

(iii) for every (q1, q2) ∈ R we have that q1
l1−−−−→
1

p1 in S1 implies the

existence of q2
l2−−−−→
2

p2 in S2 satisfying (p1, p2) ∈ R.
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Finite State Approximations and Passivity preserving

Approximate Bisimulation

Definition (ε-Approximate Bisimulation)

Let S1 := (Q1, L1,−−−−→
1

,O1,H1), S2 := (Q2, L2,−−−−→
2

,O2,H2) be

deterministic metric transition systems with the same sets of labels L and
outputs O equipped with the metric d. Let ε ∈ R+

0 be a given precision, a
relation R ⊆ Q1 × Q2 is said to be an ε-approximate bisimulation relation
between S1 and S2 if the following three conditions are satisfied:

(i) for every (q1, q2) ∈ R we have d(H1(q1),H2(q2)) ≤ ε;

(ii) for every (q1, q2) ∈ R we have that q1
l1−−−−→
1

p1 in S1 implies the

existence of q2
l2−−−−→
2

p2 in S2 satisfying (p1, p2) ∈ R.

(iii) for every (q1, q2) ∈ R we have that q2
l2−−−−→
2

p2 in S2 implies the

existence of q1
l1−−−−→
1

p1 in S1 satisfying (p1, p2) ∈ R.
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Finite State Approximations and Passivity preserving

Incrementally Input to State Stable

Definition

A control system Σ is incrementally input to state stable (δ- ISS) if it is
forward complete and there exist a KL function β and a K∞ function γ
such that for any t ∈ R+

0 , any x , x ′ ∈ Rn and any v , v ′ ∈ U the following
condition is satisfied:

‖ζx ,v (t)− ζx ′,v ′(t)‖ ≤ β(‖x − x ′‖, t) + γ(‖v − v ′‖) (1)

Theorem (Tabuada 2008)

Consider a control system Σ and any desired precision ε > 0. If Σ is
δ-ISS then for any τ > 0, η > 0 and µ > 0 satisfying the following
inequality:

β(ε, τ) + γ(µ) + η/2 ≤ ε, (2)

the transition system SUτ (Σ) is ε-bisimilar to Sτ,η,µ(Σ).
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Finite State Approximations and Passivity preserving

Incrementally Forward Complete Systems (δ-FC)

Definition

A control system Σ is δ-FC if there exist continuous functions β : R+
0 ×R+

0 → R+
0

and γ : R+
0 × R+

0 → R+
0 such that for every s ∈ R+, the functions β(·, s) and

γ(·, s) belong to class K∞, and for any x , x ′ ∈ Rn, any τ ∈ R+, and any
v , v ′ ∈ U , where v , v ′ : [0, τ)→ U, the following condition is satisfied for all
t ∈ [0, τ ]:

‖ζx,v (t)− ζx′,v ′(t)‖ ≤ β(‖x − x ′‖, t) + γ(‖v − v ′‖, t).

Theorem (Tabuada 2012)

If Σ is δ-FC with desired precision ε > 0 then for any τ > 0, θ > 0, η > 0 and
µ > 0 satisfying the following inequality:

β(θ, τ) + γ(µ, τ) + η ≤ ε,

such that µ ≤ µ̂ and η ≤ η̂ ≤ ε ≤ θ, then the transition system Sτ (Σ) is

ε-approximately similar to Sτ,θ,µ(Σ).
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Finite State Approximations and Passivity preserving

Passivity

A nonlinear system Σ with an output y(t) = h(x(t), u(t)) is input output
strictly passive (IOSP) with a storage function V if

V̇ (x(t)) ≤ uT (t)y(t)− ρyT (t)y(t)− νuT (t)u(t) ∀t ≥ 0

where ν > 0, ρ > 0.

We assume that V is Lipschitz continuous, i.e.,

|V (x1)− V (x2)| ≤ K (‖x1 − x2‖)

where K is a Lipschitz constant.

Let x(t, q, l) denote the point reached at time t ∈ [0, τ ], under the input l
and initial condition q. Also let

y(t, q, l) = h(x(t, q, l), l).
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Finite State Approximations and Passivity preserving

Passivity for a transition system

For the transition system Sτ (Σ) := (Q1, L1,−−−−→
1

,O,H) consider a

transition q1
l1−−−−→
1

p1 where x(τ, q1, l1) = p1.

Sτ (Σ) is (ν, ρ) - IOSP if all the transitions satisfy inequalities like

V (x(t, q1, l1))− V (q1) ≤ 〈l1, y(t, q1, l1)〉 − ρ〈y(t, q1, l1), y(t, q1, l1)〉
−ν〈l1, l1〉 0 ≤ t ≤ τ.

Where V is the storage function and

V (x(t, q1, l1))− V (q1) is the increase in stored energy.

〈l1, y(t, q1, l1)〉 − ρ〈y(t, q1, l1), y(t, q1, l1)〉 − ν〈l1, l1〉 is the energy supplied
during the transition.
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Finite State Approximations and Passivity preserving

Passivity for a symbolic model

For the symbolic system Sτ,η,µ(Σ) := (Q2, L2,−−−−→
2

,O2,H2) consider a

transition q2
l2−−−−→
2

p2, where l2 ∈ L2(q2) and

‖p2 − z(t, q2, l2)‖ ≤ η/2 ≤ ε for δ - ISS systems

‖p2 − z(t, q2, l2)‖ ≤ β(θ, τ) + γ(µ, τ) + η/2 ≤ ε for δ - FC systems

Sτ,η,µ(Σ) is (νF , ρF ) - IOSP if all the transitions satisfy

V (p2)− V (q2) ≤ lT2 h(q2, l2)τ − ρFhT (q2, l2)h(q2, l2)τ − νF lT2 l2τ

Proposition: If there exists α, α ∈ K∞ such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖)

then (νF , ρF ) - IOSP Passivity for a symbolic system Sτ,η,µ(Σ) leads to
0-input Lyapunov stability [Passino 1991].
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Finite State Approximations and Passivity preserving

Practical Passivity

Sτ,η,µ(Σ) is (ε, ρF , νF ) - practically IOSP if all the transitions satisfy

V (p2)− V (q2) ≤ lT2 h(q2, l2)τ − ρFhT (q2, l2)h(q2, l2)τ − νF lT2 l2τ + ε

where ε ∈ R+
0 .

Proposition: This definition of (ε, ρF , νF ) - practically IOSP leads to

0-input Lyapunov stability if ‖h(q2, 0)‖2
2 ≥ ε

ρF
.

0-input practical asymptotic stability, i.e.,

‖xi+1‖ ≤ β(‖xi‖, τ) + δ

if there exist α ∈ K∞ such that hT (x , 0)h(x , 0) ≥ α(‖x‖)
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Finite State Approximations and Passivity preserving

Preserving Passivity

Assumption 1 [Oishi 2010]

Assume that the operator from u(t) to ẏ(t) has the finite L2 gain, γ, that
is ∫ T

0
‖ẏ(t)‖2

2dt ≤ γ2

∫ T

0
‖u(t)‖2

2dt

for any T ≥ 0 and admissible u(t).

Theorem

Suppose that the original continuous-time system Σ is (ν, ρ) - IOSP
and Assumption 1 is satisfied. Let Sτ (Σ) be the transition system
defined by Σ. If Sτ,η,µ(Σ) is ε - approximately bisimilar (or similar) to
Sτ (Σ), then Sτ,η,µ(Σ) is (K (ε), νF , ρF ) - practically IOSP where

νF = ν − τγ − τγ|ρ| − τ2γ2|ρ|
ρF = ρ− τγ|ρ|.
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Finite State Approximations and Passivity preserving

Outline of the proof

IOSP passivity of Σ leads to

〈l2, y(t, q2, l2)〉 − ρ〈y(t, q2, l2), y(t, q2, l2)〉 − ν〈l2, l2〉
+V (q2)− V (z(t, q2, l2)) ≥ 0,

it is required to prove that

lT2 h(q2, l2)τ − ρFhT (q2, l2)h(q2, l2)τ − νF (lT2 l2)τ + V (q2)− V (p2) ≥ 0,
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Finite State Approximations and Passivity preserving

Outline of the proof

For 0 ≤ t ≤ τ we compare 〈l2, y(t, q2, l2)〉 and τ lT2 h(q2, l2)

|〈l2, y(t, q2, l2)〉 − τ lT2 h(q2, l2)|
≤ τ.γ.τ(lT2 l2)

⇒ 〈l2, h(z(t, q2, l2), l2)〉 ≤ τ2γ(lT2 l2) + τ lT2 h(q2, l2)

Other comparisons:

|〈y(t, q2, l2), y(t, q2, l2)〉 − τhT (q2, l2)h(q2, l2)|

≤ (τγ + τ2γ2)τ(lT2 l2) + τ2γ.hT (q2, l2)h(q2, l2),

− ν〈l2, l2〉 = −ν.τ(lT2 l2)
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Finite State Approximations and Passivity preserving

Outline of the proof

For Lipschitz continuous storage functions

V (p2) ≤ V (z(t, q2, l2)) + K (‖p2 − z(t, q2, l2)‖)
= V (z(t, q2, l2)) + K (‖p2 − z(t, q2, l2)‖)

For δ - ISS systems

‖p2 − z(t, q2, l2)‖ ≤ η/2 ≤ ε

For δ - FC systems

‖p2 − z(t, q2, l2)‖ ≤ β(θ, τ) + γ(µ, τ) + η/2 ≤ ε

⇒ V (p2) ≤ V (z(t, q2, l2)) + K (ε)

Thus, we have practical IOSP of the form

lT2 h(q2, l2)τ − ρFhT (q2, l2)h(q2, l2)τ − νF (lT2 l2)τ + K (ε) ≥ V (p2)− V (q2)

Shravan Sajja Towards Passivity based software synthesis 30/31



Finite State Approximations and Passivity preserving

Future work...

Consequences of passivity for a symbolic system for Σ [Xia 2012].

Compositionality property for Parallel and Feedback compositions of
symbolic models.

Robustness for symbolic models.

Verification of passivity of symbolic models.
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