

Massachusetts Institute of Technology

Collaborative Research: Towards Robots with Human Dexterity

Neville Hogan and Dagmar Sternad

Massachusetts Institute of Technology

Northeastern University

Understanding Human Dexterity

- Premise: Studying humans may facilitate
 - Improved robot control
 - Scale-up to many DOF
 - Physical human-robot collaboration
- Hypothesis: Humans use dynamic primitives
 - To work around neural limitations
- Dynamic primitives: Robust attractors of low-level dynamics
 - Limit cycle (rhythmic oscillation)
 - Trajectory (stereotyped submovement)
 - Mechanical impedance (interactive behavior)

Combine Primitives in a Nonlinear Equivalent Network

The 'equivalent source'

- Describes forward path dynamics
- Composed of motion primitives

The 'equivalent resistance'

- Describes interactive dynamics
- Composed of impedances

A 'neo-classical' approach?

Mechanical Impedance Compositionality

Compositionality: Impedances superimpose even if non-linear

- Map desired end-point stiffness $f = k(x_0 x)$ to configuration space $\tau = J(\theta)^T k(x_0 L(\theta))$
- Define configuration controller $\tau_j = K(\theta_n \theta)$ and add $\tau_{net} = J(\theta)^T k(x_0 L(\theta)) + K(\theta_n \theta)$

Notable features:

- No inverse kinematics—works at singularities
- Makes control modular and versatile
 - Flexible object
 - Multi-arm coordination
 - Contact and non-contact phases

Human Interaction with a Kinematic Constraint

Subjects turned a crank while instructed to:

- Turn at different constant speeds: slow, medium, fast
- CW or CCW
- The hand was occluded from view
- Visual speed feedback was provided

Main result: Despite instruction and feedback

- Speed varied systematically with crank angle
- Normal force varied systematically about zero

Underlying motion command:

- Describe interaction dynamics as mechanical impedance $Z\{\cdot\}$
 - $F(t) = Z\{\Delta x(t)\}$
 - $\Delta x(t) = x_0(t) x(t)$
- Subtract off interaction dynamics

•
$$x_0(t) = x(t) + Z^{-1}{F(t)}$$

 $x_0(t)$ = zero-force trajectory (ZFT)

Zero-Force Trajectory Revealed Underlying Structure

Zero-Force Trajectory

- Roughly elliptical path
- Speed minima and curvature maxima coincided

Similar to a speed-curvature relation widely reported in unconstrained motion

The "1/3 power law"

Dynamic Primitives

 Consistent with underlying motion composed of two primitive oscillations

Zero-force trajectories. Red lines denote major & minor axes of best-fit ellipse

Human Interaction with a Moving Constraint: 1/3 Power Law

$$b = 1/3$$

Humans display a specific scaling of velocity with curvature

$$v(t) = K r(t)^b$$

v: tangential velocity, r: radius of curvature, b: 1/3

Humans Cannot Perform Non-Biological Velocity Patterns

 Humans exert greater forces with greater deviations from b = 1/3.

 Humans do not learn non-biological velocitycurvature patterns without visual feedback.

Human Interaction with a Complex Object

How Do Humans Manipulate Complex Objects?

- Long delays imply heavy reliance on predictive control based on an internal model
- But complex internal models seem unlikely

Overall Hypothesis:

Humans simplify control by using dynamic primitives

Control via Input Shaping eliminates residual vibrations

Alternative Hypotheses:

Using optimization

Input Shaping with Two Submovements is the Best Control Strategy

Two submovements fit the human velocity profile

Input shaping

Dynamic Primitives

Next Step: Asymmetric profile indicates presence of impedance

Compositionality Simplifies Scale-Up to Many DOF

- Readily extends to two (or more) arms
 - Connected at a common end-point
 - Interacting with a common object
 - Net end-point stiffness is $k_{both} = k_l + k_{j,l} + k_r + k_{j,r}$
- Superimpose open-chain single arm controllers
 - Left arm: $\tau_{net,l} = J(\theta_l)^T k_l \left(x_{0,l} L(\theta_l) \right) + K_l \left(\theta_{n,l} \theta_l \right)$
 - Right arm: $\tau_{net,r} = J(\theta_r)^T k_r \left(x_{0,r} L(\theta_r) \right) + K_r \left(\theta_{n,r} \theta_r \right)$
- No closed-chain kinematic computation
- No inverse kinematic computation

