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* Premise: Studying humans may facilitate

* Improved robot control
e Scale-up to many DOF

Combine Primitives in a Nonlinear Equivalent Network

information domain energy domain
* Physical human-robot collaboration impedance command impedance Z{Ax} !
= (interactive dynamics) I
° . . ey ® [=Ne)
* Hypothesis: Humans use dynamic primitives  motion command [ vargparh 8 &
 To work around neural limitations oscillations, ey X
| submovements zero-force
“ trajectory J;
* Dynamic primitives: Robust attractors of low-level

dynamics

The ‘equivalent source’ The ‘equivalent resistance’
o ) _ _ * Describes forward path dynamics * Describes interactive dynamics
 Limit cycle (rhythmic oscillation)

* Composed of motion primitives * Composed of impedances
* Trajectory (stereotyped submovement)

* Mechanical impedance (interactive behavior)

A ‘neo-classical’ approach?

Hogan, Geom and Num Foundations, Springer, 2017
Hogan, IEEE/ASME Trans on Mechatronics, 2014

Schaal, Kotosaka, Sternad, Humanoid Robotics, 1998 Hogan & Sternad, Biol Cybernetics, 2012
Sternad, Coordination, Springer, 2008

Hogan & Sternad, Front Comp Neurosci, 2013



even if non-linear
* Map desired end-point stiffness f = k(x, — x) to
configuration space T = J(6)Tk(xo, — L(6))

* Define configuration controller

 Compositionality: Impedances superimpose

_
and add T,e = J(O)"k(xo — L(8))

Notable features:
No inverse kinematics—works at singularities

Makes control modular and versatile

* Flexible object

* Multi-arm coordination
* Contact and non-contact phases

Verdi, Masters Thesis, Mech Engineering, MIT, 2019
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Verdi & Hogan, provisional patent application Nov 8, 2019




Subjects turned a crank while instructed to:
* Turn at different constant speeds: slow, medium, fast
« CWorCCW
 The hand was occluded from view
* Visual speed feedback was provided

Main result: Despite instruction and feedback
* Speed varied systematically with crank angle
* Normal force varied systematically about zero

Underlying motion command:

* Describe interaction dynamics as mechanical impedance Z{-}

e F(t) =Z{Ax(t)}
o Ax(t) = xo(t) — x(t)

e Subtract off interaction dynamics
« xo(t) = x(t) + Z7H{F(t)}

Hermus, Masters Thesis, Mech Engineering, MIT, 2018

xo(t) = zero-force trajectory (ZFT)

Hermus, Doeringer, Sternad, Hogan, J Neurophysiology, revised




Zero-Force Trajectory e slow > medium 3
* Roughly elliptical path ‘5’05, el D) 007% %0_5 AT 25%
* Speed minima and curvature %04 ( V " - %0_4 ( ) > =

maxima coincided T s e T | 1'5>

0.04
Similar to a speed-curvature 202 o 0.2 2 02 o 0.2 v °2 02 o 0.2
relation widely reported in X-Position (m) X-Position (m) X-Position (m)
unconstrained motion Zero-force trajectories. Red lines denote major & minor axes of best-fit ellipse
* The “1/3 power law” 0.25 30
>0 02 & - Angular separation

Dynamic Primitives go/@\;—a/’é\—dOﬁ% §2° of corresponding
 Consistent with underlying 50\@/%8;5% 810 extrema

motion composed of two 0 50 100 150 200 250 300 350

primitive oscillations Angle (deg) 0t e

Zero-force trajectory speed and curvature A (pct rev)

Hermus, Doeringer, Sternad, Hogan, J Neurophysiology, revised
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Humans display a specific scaling of velocity with curvature
v(t) = Kr(t)®

V: tangential velocity, r: radius of curvature, b: 1/3

L4

Maurice, Huber, Hogan, Sternad, Robotics and Automation Letters, 2017
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How Do Humans Manipulate Complex Objects?

* Long delays imply heavy reliance on predictive
control based on an internal model

® But complex internal models seem unlikely

Overall Hypothesis:

Humans simplify control by using dynamic primitives

® Control via Input Shaping eliminates residual
vibrations
Minimum-crackle

Alternative Hypotheses:
* Using optimization

o
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Data and Models

Different Model Fits
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Two submovements fit the
human velocity profile

Input shaping wsp
Dynamic Primitives

Next Step: Asymmetric
profile indicates presence
of impedance

Bazzi, Ebert, Hogan, Sternad, ICRA, 2018

Guang, Bazzi, Sternad, Hogan, ICRA, 2019



Readily extends to two (or more) arms

* Connected at a common end-point \
* Interacting with a common object

* Net end-point stiffnessis kporn = ki + kj; + ki + Kj

Superimpose open-chain single arm controllers
* Leftarm: 1001 = J(6) "k (xo,z — L(Qz)) + K, (0n, — 61)
. A
* Rightarm: Ty, = J(6) "k, (xO,r - L(Hr)) + Kr(en,r — 91‘)

No closed-chain kinematic computation

No inverse kinematic computation
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