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• Premise: Studying humans may facilitate
• Improved robot control 

• Scale-up to many DOF
• Physical human-robot collaboration

• Hypothesis: Humans use dynamic primitives
• To work around neural limitations

• Dynamic primitives: Robust attractors of low-level 
dynamics

• Limit cycle (rhythmic oscillation)
• Trajectory (stereotyped submovement)
• Mechanical impedance (interactive behavior)

The ‘equivalent source’
• Describes forward path dynamics
• Composed of motion primitives

The ‘equivalent resistance’
• Describes interactive dynamics
• Composed of impedances

Combine Primitives in a Nonlinear Equivalent Network

A ‘neo-classical’ approach?

Hogan, Geom and Num Foundations, Springer, 2017 
Hogan, IEEE/ASME Trans on Mechatronics, 2014

Understanding Human Dexterity

Hogan & Sternad, Biol Cybernetics, 2012
Hogan & Sternad, Front Comp Neurosci, 2013

Schaal, Kotosaka, Sternad, Humanoid Robotics, 1998
Sternad, Coordination, Springer, 2008



Tensioning

• Compositionality: Impedances superimpose 
even if non-linear
• Map desired end-point stiffness 𝑓 = 𝑘 𝑥! − 𝑥 to 

configuration space 𝜏 = 𝐽 𝜃 "𝑘 𝑥! − 𝐿 𝜃

• Define configuration controller 𝜏# = 𝐾 𝜃$ − 𝜃
and add 𝜏$%& = 𝐽 𝜃 "𝑘 𝑥! − 𝐿 𝜃 + 𝐾 𝜃$ − 𝜃

• Notable features:
• No inverse kinematics—works at singularities 
• Makes control modular and versatile

• Flexible object
• Multi-arm coordination
• Contact and non-contact phases

Sinusoidal OscillationApply Normal Force

Mechanical Impedance Compositionality

Verdi & Hogan, provisional patent application Nov 8, 2019Verdi, Masters Thesis, Mech Engineering, MIT, 2019



Subjects turned a crank while instructed to:
• Turn at different constant speeds: slow, medium, fast
• CW or CCW
• The hand was occluded from view
• Visual speed feedback was provided

Main result: Despite instruction and feedback
• Speed varied systematically with crank angle
• Normal force varied systematically about zero

Underlying motion command:
• Describe interaction dynamics as mechanical impedance 𝑍{#}

• 𝐹 𝑡 = 𝑍 Δ 𝑥 𝑡
• Δ𝑥 𝑡 = 𝑥!(𝑡) − 𝑥(𝑡)

• Subtract off interaction dynamics
• 𝑥! 𝑡 = 𝑥 𝑡 + 𝑍'( 𝐹 𝑡

Human Interaction with a Kinematic Constraint

Hermus, Doeringer, Sternad, Hogan, J Neurophysiology, revisedHermus, Masters Thesis, Mech Engineering, MIT, 2018

𝒙𝟎 𝒕 = zero-force trajectory (ZFT)



slow medium fast

Zero-force trajectories. Red lines denote major & minor axes of best-fit ellipse

Zero-force trajectory speed and curvature

Zero-Force Trajectory
• Roughly elliptical path
• Speed minima and curvature 

maxima coincided

Similar to a speed-curvature 
relation widely reported in 
unconstrained motion
• The “1/3 power law”

Dynamic Primitives
• Consistent with underlying 

motion composed of two 
primitive oscillations

Zero-Force Trajectory Revealed Underlying Structure

Angular separation 
of corresponding 
extrema

Hermus, Doeringer, Sternad, Hogan, J Neurophysiology, revised



Humans display a specific scaling of velocity with curvature

v: tangential velocity, r: radius of curvature, b: 1/3

Maurice, Huber, Hogan, Sternad, Robotics and Automation Letters, 2017

Human Interaction with a Moving Constraint: 1/3 Power Law

v(t) = K r(t)b
b = 1/3
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• Humans exert greater 
forces with greater 
deviations from b = 1/3.

• Humans do not learn 
non-biological velocity-
curvature patterns 
without visual feedback.

Humans Cannot Perform Non-Biological Velocity Patterns

b = 1/3

Maurice, Huber, Hogan, Sternad, Robotics and Automation Letters, 2017

b = - 1/3

No Visual Feedback With Visual Feedback
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Human Interaction with a Complex Object

Bazzi, Ebert, Hogan, Sternad, ICRA, 2018
Guang, Bazzi, Sternad, Hogan, ICRA, 2019

How Do Humans Manipulate Complex Objects?
• Long delays imply heavy reliance on predictive 

control based on an internal model
• But complex internal models seem unlikely

Overall Hypothesis: 
Humans simplify control by using dynamic primitives
• Control via Input Shaping eliminates residual 

vibrations
Minimum-crackle Minimum-jerk Input Shaping
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Alternative Hypotheses:
• Using optimization 



Input Shaping with Two Submovements is the Best Control Strategy
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Two submovements fit the 
human velocity profile

Input shaping 
Dynamic Primitives

Next Step: Asymmetric 
profile indicates presence 
of impedance

Bazzi, Stansfield, Sternad, Hogan (in preparation)
Bazzi, Ebert, Hogan, Sternad, ICRA, 2018

Guang, Bazzi, Sternad, Hogan, ICRA, 2019

Data and Models Submovement Fitting
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• Readily extends to two (or more) arms
• Connected at a common end-point
• Interacting with a common object

• Net end-point stiffness is 𝑘!"#$ = 𝑘% + 𝑘&,% + 𝑘( + 𝑘&,(

• Superimpose open-chain single arm controllers
• Left arm: 𝜏)*#,% = 𝐽 𝜃% +𝑘% 𝑥,,% − 𝐿 𝜃% + 𝐾% 𝜃),% − 𝜃%
• Right arm: 𝜏)*#,( = 𝐽 𝜃( +𝑘( 𝑥,,( − 𝐿 𝜃( + 𝐾( 𝜃),( − 𝜃(

• No closed-chain kinematic computation

• No inverse kinematic computation

Compositionality Simplifies Scale-Up to Many DOF


