Towards Robust Moving Target Defense: A Game Theoretic and Learning Approach

Zizhan Zheng, Department of Computer Science, Tulane University http://www.cs.tulane.edu/~zzheng3/projects/NSF-SaTC-2018.html

Challenge:

Interplay between system dynamics, security, and incentives

Intelligent, stealthy, and persistent attacks Necessity of coordinating multiple defenders

Solution:

Markovian Stackelberg Games for state-dependent defense

- Non-trivial extension of Bayesian Stackelberg Games
- Configuration-dependent \bullet loss and switching cost

Joint spatial and temporal decisions in large-scale MTD

- Configuration and time ulletdependent loss
- \bullet large-scale MTD

0.35 Uniform Random **Proportional Sampling** U.3 0.25 0.2 0.2 0.15 0.3

Scientific Impact:

A rigorous approach to the design and analysis of active defense against stealthy attacks Deep insights on information asymmetry and the use of continuous learning in cyber attack and defense

> Thwarting unknown attacks via online learning

- Focusing on temporal decisions
- Time associative bandits with dependent arms

Broader Impact:

A cross-disciplinary approach to cybersecurity

New game theoretic and learning methods for decision making beyond cybersecurity

Education:

1 graduate student and 1 undergraduate coordinate major student involved in Year 1 1 postdoc and 2 undergraduate coordinate major students joining in Year 2

Potential Impact:

Both system/network administrators and end users can potentially benefit from the resulting research Results will be incorporated into a new course on analytic approaches to cybersecurity

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia