
The 5th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2022 SaTC PI Meeting)
June 1-2, 2022 | Arlington, Virginia

Towards Robust and Scalable Search of Binary Code and
Data

Institution: University of California, Riverside
Principal Investigator: Heng Yin (heng@cs.ucr.edu)

Solution
We take a novel approach that leverages the power of
ML/DL and build a pipeline of work that includes:
• DeepDi [Usenix’22]: A deep learning-based fast

disassembler
• PalmTree [CCS’21]: Pretrained instruction

embedding based on BERT
• Gemini [CCS’17]: Binary similarity detection based

on function embedding
• DeepBinDiff [NDSS’20]: Binary diffing based on

basic-block representations
• DeepMem [CCS’18]: A fast and robust GNN-based

memory forensics approach

Broader Impact (impact on
society)
• The project can be applied to security

task such as vulnerability detection,
which will guard the security for PC
and mobile users.

• The project have large practice use
due to its scalability.

• Reverse engineer, security analyst
and security audit company can
benefit from the project.

Challenge
• Identify semantically equivalent or similar code in different

architectures and compilation settings. The syntactic
variations among similar code need to be tolerated so that
the approach can be applied in cross-platform scenarios.

• Identify objects from binary data such as memory dumps
and documents. The approach needs to be robust against
changes caused by different platform versions and malicious
manipulations such as DKOM (Direct Kernel Object
Manipulation) attacks.

• Scale to a large dataset. The approach needs to be scalable
in order to be applied in real-world scenarios such as
malware detection. Current disassembly approaches are
hard to be accurate and efficient at the same time. Pair-wise
comparison of binary code is not scalable as well.

Scientific Impact
• Benefited security applications built on top of the project

• Disassembly can be leveraged in downstream cybersecurity
applications including machine learning based malware
detection and classification.

• Instruction embeddings can be leveraged in downstream
function argument inference, etc.

• Function embedding can be leveraged in code plagiarism
detection, etc. Binary diffing can be leveraged in more fine-
grained applications such as security patch analysis.

• Stimulated more research in the direction of deep learning-
based binary analysis

• Gemini got 388 citations by 05/08/2022.
• Stimulated more binary embedding models (e.g. Asm2vec

[S&P’2019], InnerEye [NDSS’2019], FunctionSimSearch by
Google Project Zero Team)

Broader Impact (education
and outreach)
• The techniques of binary code and

data search can be leveraged in
industry and national security.

• The proposed deep-learning based
binary code similarity detection
approach has received an NSF SBIR
award for commercialization.

Broader Impact and Broder
Participation
• Reduced the workload and improved

efficiency of reverse engineering (e.g.
A CUDA implementation of DeepDi is
350 times faster than IDA Pro).

• Detected and mitigated known
vulnerabilities in real-world binaries
(e.g. Gemini identified 42
vulnerabilities among top 50 in large
scale firmware dataset).

Abstract
The problem of binary code and data search concerns how to glean valuable information from
binary code and binary data in an accurate, scalable and robust fashion. This concern is central
to many security problems, including vulnerability detection, plagiarism detection, malware
classification, memory forensics, etc. Our work takes a novel approach that mimics how the
human brain recognizes interesting objects from an enormous amount of visual information
and builds a pipeline to improve binary code and data search from different aspects, including
disassembly, pretrained instruction embedding, cross-platform function embedding, basic-
block level binary diffing and kernel data structure discovery.

Award ID#:1719175

1: mov rbp, rdi
2: mov ebx, 0x1
3: mov rsi, rbp
4: mov rdx, rbx
5: call memcpy
6: mov [rcx+rbx], 0x0
7: mov rcx, rax
8: mov [rax], 0x2e

1 3

2 6
Instruction Pair

Sampling
mov rdx, rbx mov [rcx+rbx], 0x0

[CLS] mov rdx rbx [SEP] mov

[rcx + rbx] 0x0 [SEP]

Raw Instructions

DFG

Instruction
Tokens

Instruction Pair Sampling Tokenization

Assembly
Language Model

2

4

5

7 8

1

3 6

E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...
MLM: internal formats

Masked Language Model

E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...
CWP: contextual dependency

E[CLS]

Trm

E2 EN

Trm Trm

Trm Trm Trm

C T2 TN...

...

...

...

Def-Use Prediction

DUP: data flow dependency

Context
Window

Data
Flow
Pairs

2 4

4 6

Control
Flow
Pairs

Context Window Prediction

Tokenization

Another node
not in the segment

0: 83
1: FA
2: 5C
3: 75
4: 02
5: FF
6: 03
7: 8B
8: 0B

0: cmp edx, 0x5C
1: cli
2: pop esp
3: jnz 0x07
4: add bh, bh
5: inc dword [ebx]
6: add ecx, dword [ebx+0x9090900B]
7: mov ecx, dword [ebx]
8: or edx, dword [eax+0x90909090]

Line Opcode ModRM SIB REX Len
0 83 FA 00 00 3
1 FA 00 00 00 1
2 5C 00 00 00 1
3 75 00 00 00 2
4 02 FF 00 00 2
5 FF 03 00 00 2
6 03 8B 00 00 6
7 8B 0B 00 00 2
8 0B 90 00 00 6

RNN RNN RNN

u0 u3 u5

RNN RNN RNN

u3 u5 u7

(e) Instruction Flow
Graph

Forward Edge
Backward Edge
Overlap Edge

h0 h1

h2h3h4

h5h6

h7h8

x(1) x(2) x(3)

x(1) x(2) x(3)

0: cmp edx, 0x5C
1: cli
2: pop esp
3: jnz 0x07
4: add bh, bh
5: inc dword [ebx]
6: add ecx, dword [ebx+0x9090900B]
7: mov ecx, dword [ebx]
8: or edx, dword [eax+0x90909090]

Valid Instruction
Invalid Instruction

(f) Instruction Classification Result

Em
bedding Layer

u0

u3

u5

h0

h3

(a) Raw Bytes (b) Superset of
Instructions

(c) Instruction Metadata (d) Instruction Embedding

Superset
Disassembly

Graph
Generation

Graph
Inference

Extracting Metadata

DeepDi’s
Trainable
Modules

Fully C
onnected Layer

Sigm
oid

Disassembly

Binary Diffing

Instructions

Functions

Kernel Data Structure DiscoveryMemory Dump
……

mov rdx, [rdi+78h]
cmp [rsi+78h], rdx
mov rax, rsi
jg short loc_407EC0
jl short loc_407ED0
mov rcx, [rdi+80h]
cmp [rsi+80h], rcx
jg short loc_407EC0
jl short loc_407ED0
mov rsi, [rdi] ; s2
mov rdi, [rax] ; s1
jmp sub_404680

_EPROCESS _EPROCESS

FLINK FLINK
BLINK BLINK

Function
Argument
Inference
Type
Inference

Value-Set
Analysis

Malware
Classification

Vulnerability
Detection

Plagiarism
Detection

Security
Patch
Analysis

Memory
Forensics

● v2i_POLICY_MAPPINGS
● genrsa_main
● priv_decode_gost
● prompt_info
● ssl3_get_message

test ds:[esi+4], 0x100
jz 0x102F844A

or eax, b1 4
mov ss:[ebp+var_C0], eax

push ds:[esi+0x18]
lea eax, ss:[ebp+var_C0]
add ecx, b1 0xFC
push eax
call ? InvokeCommand@...
mov ebx, eax

test ds:[esi+4], 0x100
jz 0x102F844A

or eax, b1 4
mov ss:[ebp+var_C0], eax

test b1 c1, b1 c1
jz 0x102F8422

Overview of DeepDi with a Concrete Example
• GPU-Accelerated.
• Obfuscation Resilient. Low false

positive/negative rate on identifying obfuscated
code.

• Accurate. 0.02%/0.02% false positive/negative
rate on instruction identification and 99.9%
precision on function identification.

System design of PalmTree. 𝑇𝑟𝑚 is the transformer
encoder unit, 𝐶 is the hidden state of the first token of the sequence
(classification token), 𝑇𝑛 (𝑛 = 1 . . . 𝑁) are hidden states of other tokens of
the sequence.

• Pre-training tasks enabled.
• Accurate. Outperforms the other

instruction embedding models and also
significantly improves the accuracy of
downstream binary analysis tasks.

• v2i_POLICY_MAPPINGS
• genrsa_main
• priv_decode_gost
• prompt_info
• ssl3_get_message

