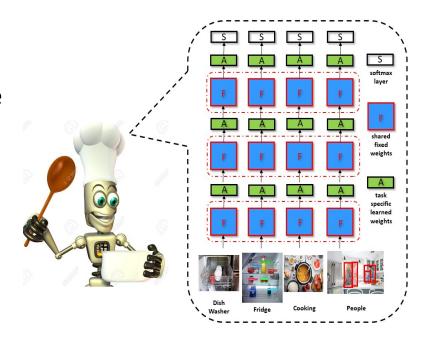
Towards Scalable and Self-Aware Robotic Perception


Award # 1924937 / 2019-2022 / Nuno Vasconcelos / UCSD

Challenge

 Robotic vision systems that are fast, scalable in the number of tasks, and aware of their limitations

Solution

 New deep learning architectures combining binary operators, massive parameter sharing, and selfawareness

Scientific Impact

 Broadly applicable to AI methods based on deep learning (NLP, vision, robotics, etc).

Broader Impact

- Better understanding of deep learning
- Many applications in robotics and beyond
- Involvement of undergraduates and high-schoolers in research

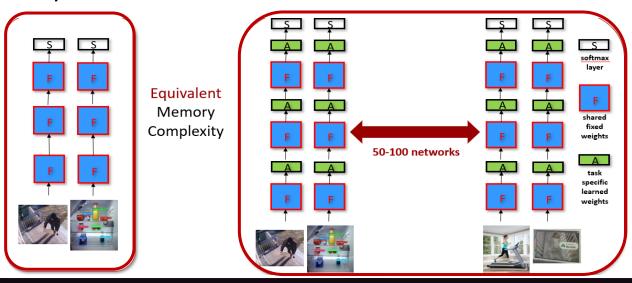
Efficient Multi-domain Learning by Covariance Normalization

Yunsheng Li & Nuno Vasconcelos UC San Diego

Challenge

 How can a deep learning model be reused across many tasks with a minimal set of adaptation parameters per task

Solution


 New architecture combining fixed layers (shared and large), residual adaptation layers (task specific and small), and covariance normalization

Scientific Impact

- Achieves state of the art performance on 10 datasets with the addition of 1-2% adaptation parameters per task
- Solve 50-100 tasks with memory complexity of two networks!

Broader Impact

- Scalable deep learning, e.g. robots that can solve many tasks with a single GPU
- Applicable to many problems of interest to robotics

