

CAREER: Towards Secure Large-Scale Networked Systems: Resilient Distributed Algorithms for Coordination in Networks under Cyber Attacks Pl: Shreyas Sundaram, Purdue University

Challenge:

- Information gathered in large-scale cyber-physical networks is dispersed throughout network
- Agents in network need to coordinate in order to share information and achieve globally optimal objectives
- CPS can be attacked by adversaries, compromising vulnerable agents and causing them to behave maliciously
- How to enable resilient distributed coordination, learning, and decisionmaking?

Solution:

- Created algorithms for distributed optimization, state estimation, and learning with provable performance guarantees, even under a large number of adversaries
- Algorithms are scalable and do not require nodes to know global information (such as network topology)

Award# 1653648

Award Date: 03/01/2017

Contact: sundara2@purdue.edu

Illustration of our Algorithms for Resilient Distributed Optimization

Scientific Impact:

- Understanding of fundamental limitations of achievable performance in presence of adversaries
- "Plug-and-play" algorithms for large variety of distributed coordination, learning, and decision-making tasks
- New design principles for large-scale cyber-physical systems in a variety of application domains

Broader Impact:

- Resilient cyber-physical systems and critical infrastructure enabled by the project will mitigate economic and safety consequences of cyber attacks
- Students trained in the science of resilient system design
- Easy-to-use and widely accessible web-based swarm simulator currently under development