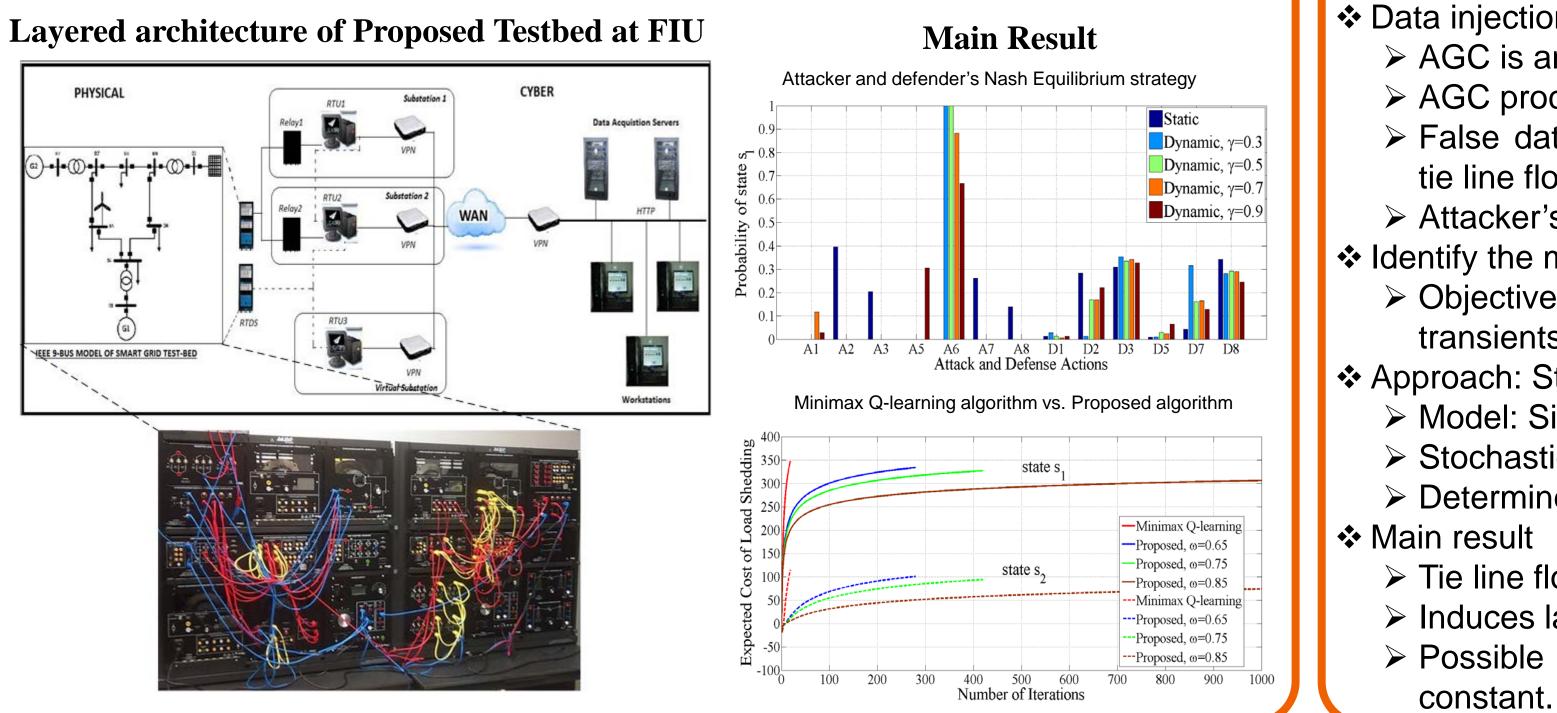
VirginiaTech Invent the Future FLORIDA INTERNATIONAL UNIVERSITY

Data Injection Attack:

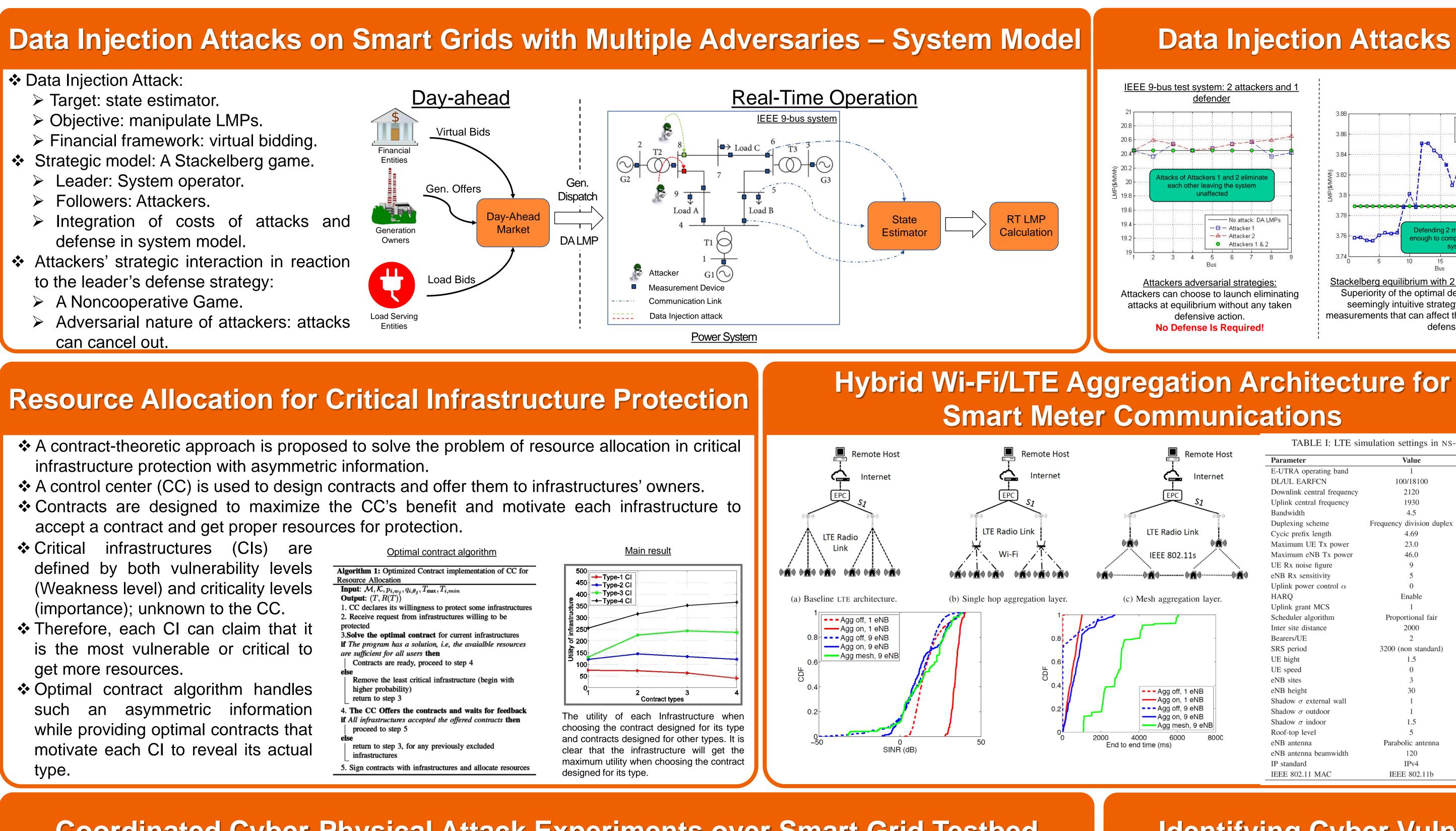
- \succ Target: state estimator.
- \succ Objective: manipulate LMPs.
- \succ Financial framework: virtual bidding.
- Strategic model: A Stackelberg game.
- Leader: System operator.
- Followers: Attackers.
- > Integration of costs of attacks and defense in system model.
- ✤ Attackers' strategic interaction in reaction to the leader's defense strategy:
 - \succ A Noncooperative Game.
 - > Adversarial nature of attackers: attacks can cancel out.

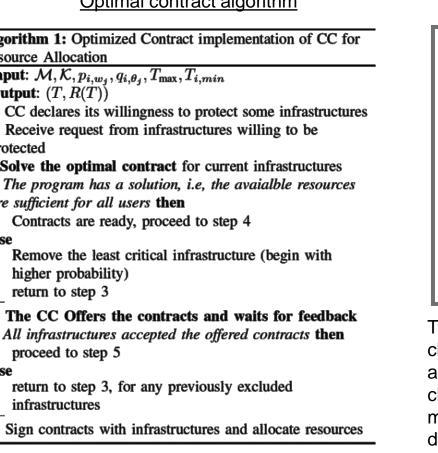
Resource Allocation for Critical Infrastructure Protection

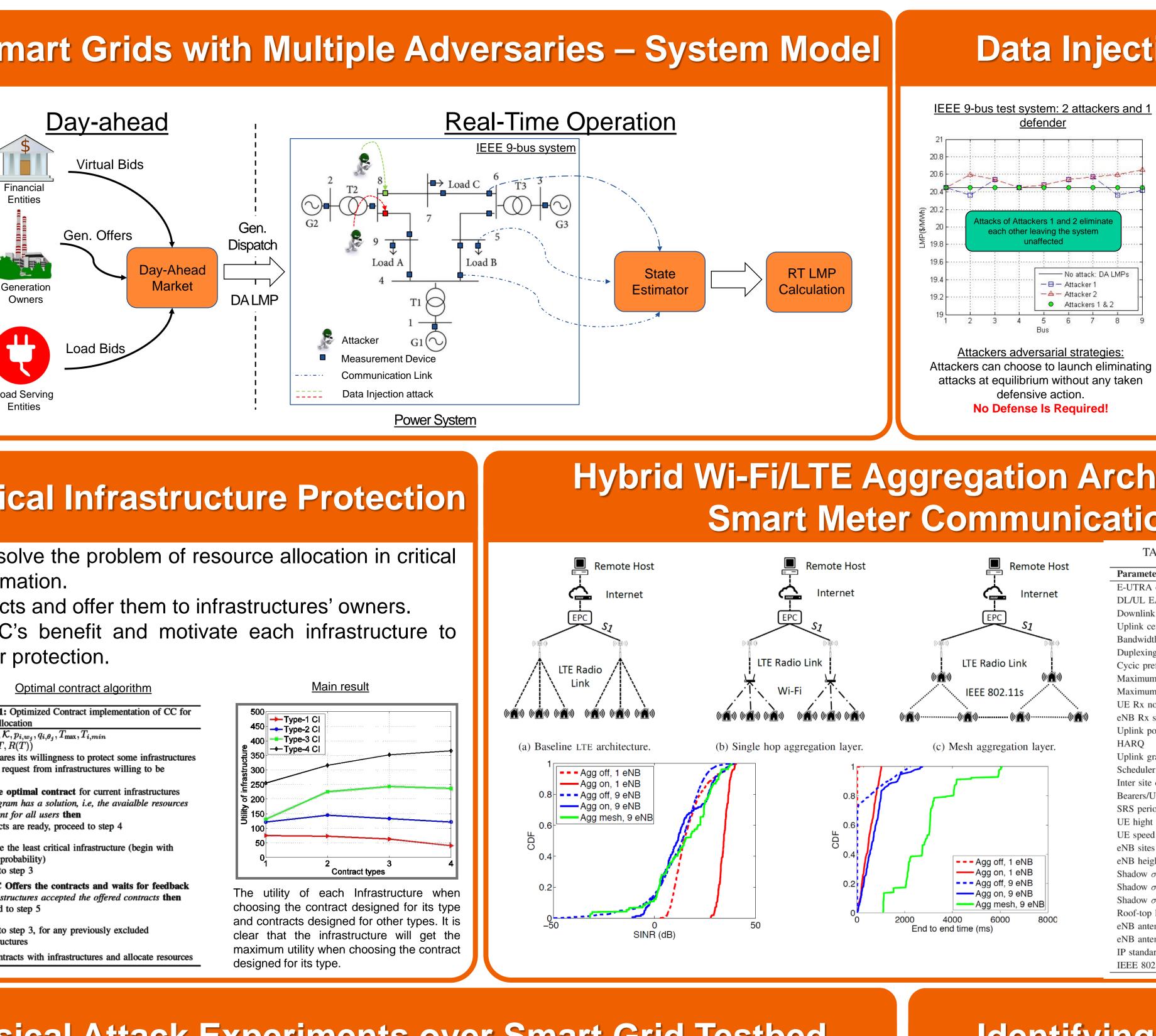
- A contract-theoretic approach is proposed to solve the problem of resource allocation in critical infrastructure protection with asymmetric information.
- ✤ A control center (CC) is used to design contracts and offer them to infrastructures' owners. Contracts are designed to maximize the CC's benefit and motivate each infrastructure to accept a contract and get proper resources for protection.
- Critical infrastructures (CIs) are defined by both vulnerability levels (Weakness level) and criticality levels (importance); unknown to the CC.
- Therefore, each CI can claim that it is the most vulnerable or critical to get more resources.
- Optimal contract algorithm handles an asymmetric information such while providing optimal contracts that motivate each CI to reveal its actual type.

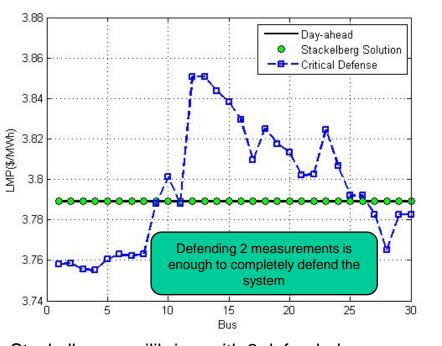

Optimal contract algorithm

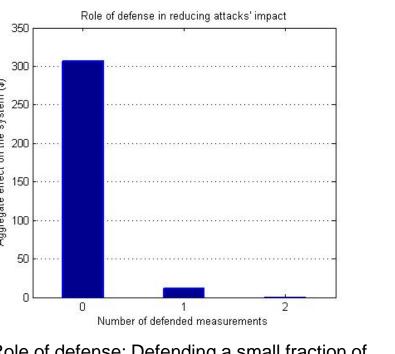
- Algorithm 1: Optimized Contract implementation of CC for esource Allocation **Input:** $\mathcal{M}, \mathcal{K}, p_{i,w_j}, q_{i,\theta_j}, T_{\max}, T_{i,\min}$ 1. CC declares its willingness to protect some infrastructures 2. Receive request from infrastructures willing to be 3.Solve the optimal contract for current infrastructures if The program has a solution, i.e, the avaiable resources are sufficient for all users then Contracts are ready, proceed to step 4 Remove the least critical infrastructure (begin with higher probability)
- 4. The CC Offers the contracts and waits for feedback if All infrastructures accepted the offered contracts the
- 5. Sign contracts with infrastructures and allocate resource


Coordinated Cyber-Physical Attack Experiments over Smart Grid Testbed


- Coordinated Cyber-Physical Attack:
 - Element: Including Physical attacks and denial-of service (DoS) attacks.
 - \succ Target: transmission lines of the smart grid.
 - \succ Objective: "Disruption" of the load.
- Optimal Load Shedding:
 - \succ Objective: To determine where and how many load needed to be shed due to coordinated cyber-physical attacks for minimizing the expected cost of load shedding.
- Attacker vs. Defender:
 - \succ Model: A Non-cooperative game.
 - Utility: Expected cost of load shedding.
 - > Strategy: Distribution of finite attacks (defense mechanisms) on transmission lines.
 - > Object: Nash Equilibrium.
- Learning Algorithm:


Minimax Q-learning vs Proposed Algorithm





Towards Secure Networked Cyber-Physical Systems: A Theoretic Framework with Bounded Rationality VT: Walid Saad (PI), FIU: Arif Sarwat (PI), Ismail Guvenc, Kemal Akkaya, Temple: Saroj Biswas (PI), Aunschul Rege, Li BAi

Data Injection Attacks on Smart Grids with Multiple Adversaries – Results

seemingly intuitive strategy of defending the two measurements that can affect the system the most (critical

Defending 2 measurements (20% of vulnerable measurements): eliminate attacks' effect

Host			
	Parameter	Value	Unit
et	E-UTRA operating band	1	
c.	DL/UL EARFCN	100/18100	
	Downlink central frequency	2120	MHz
	Uplink central frequency	1930	MHz
M 1))	Bandwidth	4.5	MHz
â	Duplexing scheme	Frequency division duplex	
1 1 4 4 3	Cycic prefix length	4.69	$\mu { m s}$
	Maximum UE Tx power	23.0	dBm
****	Maximum eNB Tx power	46.0	dBm
****	UE Rx noise figure	9	dB
((* 🏦 >))	eNB Rx sensitivity	5	dB
	Uplink power control α	0	
er.	HARQ	Enable	
	Uplink grant MCS	1	
	Scheduler algorithm	Proportional fair	
	Inter site distance	2000	m
	Bearers/UE	2	
	SRS period	3200 (non standard)	ms
	UE hight	1.5	m
	UE speed	0	m/s
	eNB sites	3	
	eNB height	30	m
	Shadow σ external wall	1	dBm
	Shadow σ outdoor	1	dBm
	Shadow σ indoor	1.5	dBm
00	Roof-top level	5	m
	eNB antenna	Parabolic antenna	
	eNB antenna beamwidth	120	degree
	IP standard	IPv4	
	IEEE 802.11 MAC	IEEE 802.11b	

Adversarial Decision-Making Behavior

✤ Objective:

- Understand the adversarial mindset in infrastructure cyberattacks
- > Validating the cyber kill chain
- theoretic analysis.

Methodology:

- Interviews with 10 control systems penetration testers
- Observations of one red-blue cybersecurity exercise
- Conduct surveys among penetration testers
- Findings:

 - existing game theoretical explanations.
- Ongoing Work:

 - Designing red-blue cybsersecurity experiments

Identifying Cyber Vulnerabilities in Automatic Generation Control Systems

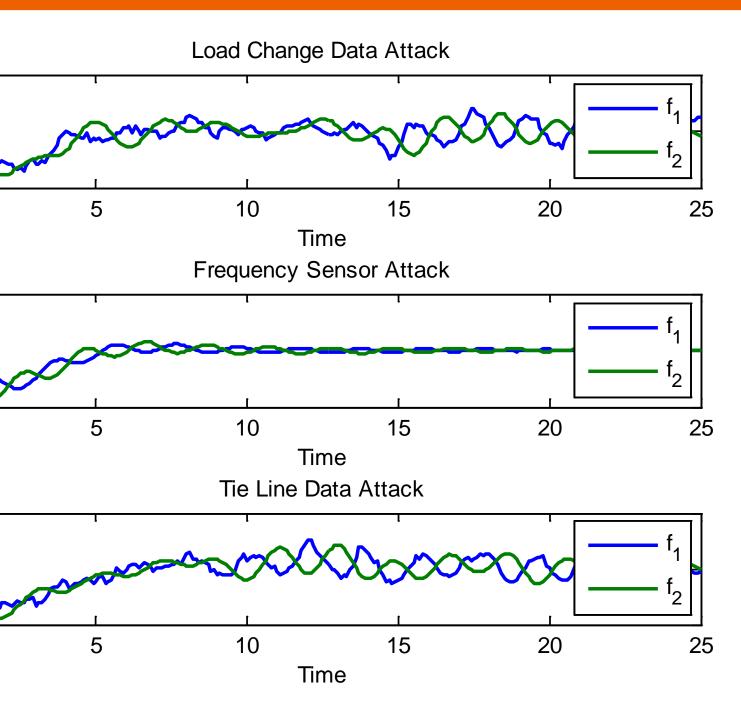
tion attack in AGC loop.		
s an integral part of Energy Management System	>	60.5
processes grid data received from SCADA	enci	<u>co</u>
data injection through multiple entry points: frequency sensor,	Frequency	60
flow, and load change command data.	Ē	59.5
er's objective: Set generators into transients and instability		0
e most vulnerable entry point in AGC		~ ~
ive: Determine the entry port that may induce the largest	JCY	60.5
ents in the grid due to a data attack	⁻ requency	60
: Stochastic stability analysis	Е	59.5
Simplify IEEE 9-Bus system to a two-area control system		0
astic dynamic model with embedded control and noise		
nine ball of convergence of state error	\succ	60.5
lt	lenc	60
e flow data and load change data ports are most sensitive.	⁻ requency	
es large transients due to relatively small data attacks (figure)	LL.	59.5 L
le defense: Fast acting AGC controller and large AEC time		-

IEEE 30-bus test system: 3 attackers (each attacking 3 measurements) and 1 defender

- **Igorithm 1** Distributed Learning Automata **(nput:** Number of attackers *M* Action space of each attacker $\mathcal{Z}^{(m)}$ **Dutput:** Strategy vector of each player $q^{(m)}$
- 1: Initialize $q^{(m)}(0)$
- 2: while Not Converged do 3: Randomly select $z^{(m)}(t)$ based on $q^{(m)}(t)$
- 4: Collect payoff $U_m(t)$
- Update strategy vector ${}^{(m)}(t+1) = q^{(m)}(t) + b U_m(t) \left(e^{(m)}(t) - q^{(m)}(t) \right)$
- 6: Check Convergence 7: **if** Converged **then**
- 9: end if 10: end while
- 11: return Strategy vector $q^{(m)}$

Finding the equilibriun Distributed learning algorithm that operates under nited system information is proposed and showr to converge to the game solution

Future Work:


Investigate the bounded rationality of attackers and defenders interactin over a networked cyber physical system (NCPS and the effect of such cognitive limitation on NCPS security. Devise a comprehensive

and generic framework modeling the strategic interaction of attackers and defenders over cyber-physical system.

> Estimating probability of various types of attackers' and defenders' actions for game

> Decision-making continuously evolves, with reconnaissance being the most relevant \succ Intrusion chains are structured as intrusion 'cycles', depending on defender actions, adversarial inadequacy, and maintaining presence inside targeted environment. > Multiple intrusions chains are evident at any given time suggesting complexities in

Designing surveys to capture and validate intrusion chains and attack vectors

