
CPS: Towards Secure, Privacy-Preserving, Verifiable Cyberphysical Systems
PIs: Esin Tureci and Kelly Shaw

Introduction

Challenges and Opportunities in CPS/IoT

Conclusions

Dynamic CPS/IoT Verification

Case study: Smart Home Environments

CPS/IoT devices communicate,
update, and store state in
distributed cloud storage. Data
may be updated inconsistently
in a variety of ways, creating
potential correctness, security,
and reliability flaws.

CPS/IoT systems are distributed over numerous sensing, actuation and
computing devices, with a diverse set of specifications includiing
• physical and often safety-critical aspects to their operation and
• time sensitive requirements and energy constraints.
Challenges for achieving correctness and security include:
• increasing frequency of dynamic code compilation and deployment and
• heterogeneity across devices, systems, and within individual devices.
Proposed work:
• Develop formal, static verification techniques for correctness
• Develop hardware support for formal, dynamic system verification
• Open-source release of techniques and tools

• Correctness and security are difficult to achieve in CPS/IoT.
• Correctness and security rely on appropriate static and dynamic

verification techniques, as security attacks often exploit design mistakes
and their implications.

• Our work is creating static and dynamic verification techniques in
support of these correctness and security goals.

Goal is to create a full suite of verification tools for design-time, compile-
time, and run-time checking of state update orderings and atomicity.
General approach: Take computer architecture concept of “litmus tests”
for verifying correctness of memory consistency implementations and
apply to CPS/IoT systems.

• Message delays or reorderings can leave device state inconsistent with
data state stored in cloud.

• Interaction of different processing elements and applications in
systems may introduce data inconsistencies and incorrect functionality.

• Lack of atomic read-modify-write operations in device programming
interface can result in lost data updates or non-intuitive results.

• Weak data consistency models used by cloud infrastructure make it
challenging for application developers to reason about correctly
updating device and cloud state as order of updates is not guaranteed.

• Complexity in testing and deploying CPS/IoT systems and software is
massive, due to the needs to ensure security and reliability.

CNS 1739701 (UR) and CNS 1739674 (Princeton), Oct. 1, 2017 - Sept. 30, 2020

Hub

Internet
Gateway

Edge Home Network

Event trigger

Lock event

Replicas

Write
operation

Read
operation

Smart home
application

Distributed Key-Value Store

Smart Home devices use cloud-based platforms to store application state,
compute in response to sensor events, and trigger device actuation.
Problem 1: System support for cloud-based platforms is insufficient:
• Asynchronous events and distributed devices lead to event reordering.
• Concurrent event processing leads to race conditions due to non-

existent read-modify-write atomic primitives.
Solution: OKAPI provides a platform synchronization service that orders
events and provides synchronization mechanisms.

1.) Ask OKAPI for data lock 2.) Lock acquired, enabling atomic updates

Problem 2: Application developers do not factor eventual consistency and

Approach: Create static
analysis tools to identify
application code that may
result in lost updates or
reordered updates to cloud
and device state.

concurrent event processing into
program development, resulting
in incorrect applications.

Litmus tests are targeted tests that access data, looking for outcomes that
are not allowed under specific guarantees. Repeated runs of the tests
ensure an implementation is tested with many different timings.
Challenge 1: Create and use litmus tests on distributed systems

Node 1 Node 2 Node 3 Node 4

Client 1 Client 2 Client 3 Client 4

(i1) x.write(1) (i2) x.write(2) (i3) r1=read(x)
(i4) r2=read(x)

(i5) r3=read(x)
(i6) r4=read(x)

x=0 initially

Outcome tested: r1=1, r2=2, r3=2, r4=1

For a system implementing strong consistency
(e.g. linearizability):

r1=1, r2=2, r3=2, r4=1 is a FORBIDDEN OUTCOME

• Adapt litmus tests to distributed key-value stores and distributed
consistency models. Execution and storage of a client are decoupled.
Updates are not local operations.

• Develop Musli Tool to repeatedly execute test, executing updates
simultaneously and performing initialization before each new test.

Analysis of 1000
iterations of Concurrent
Writes test. Selected
outcomes correspond to
Permitted/Forbidden
outcomes under
different consistency
guarantees.

Outcome Cassandra (Eventual) Explanation

1,2,1,2 15 Permitted

1,2,2,1 2 Forbidden under: Linearizability

1,2,2,2 12 Permitted

2,0,1,2 2 Forbidden under: Monotonic Reads

2,0,2,1 1 Forbidden under: Monotonic Reads

2,1,1,1, 47 Permitted

Challenge 2: Create synchronization free litmus tests
Perpetual litmus tests remove synchronization after every test iteration.
Instead each test’s immediate values replaced with monotonically
increasing sequences of values, so iteration number can be recovered.
Improves performance and stress testing, but correctness detection harder.

Amazon AWS IoT Javascript API

