

CRII: CPS: Towards a Model-Based Reinforcement Learning Approach for Safe Operation of Distributed Energy Systems

Dileep Kalathil

Department of Electrical and Computer Engineering

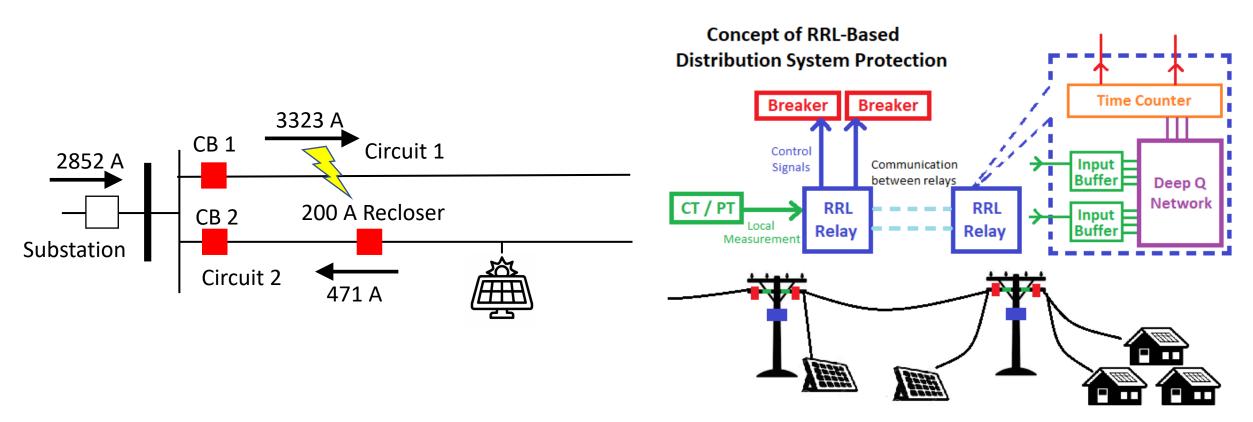
Texas A&M University

Award # 1850206, Award Period: May, 2019 – April, 2021

Email: dileep.kalathil@tamu.edu

Description

• Energy Cyber-Physical Systems

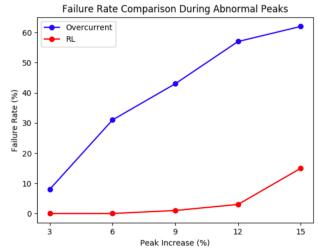

- Distributed energy resources such as electric vehicles, electricity storages, rooftop solar panels and smart appliances
- Smart infrastructure like protective relays, circuit breakers, transformers, voltage and frequency regulators

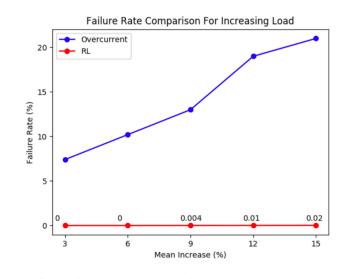
• Goal of the Project:

- Reinforcement Learning based methods for seamlessly integrating distributed energy sources into the electric grid more efficiently, effectively and affordably
- Reinforcement Learning based methods for ensuring the safe, reliable and robust operation of the electricity grid in the presence of increasing uncertainties

Description

• Reinforcement Learning for power system protection




- Protective relay control as a multi-agent reinforcement learning problem
 - Each relay needs to learn to do implicit coordination with other relays for efficient operation

Findings

- Multi-agent RL problems are typically very difficult
- Nested Reinforcement Learning for convergent and scalable learning
 - Exploiting the radial structure of distribution systems
 - Operation of a relay is not affected by its upstream neighbors
 - Train relays sequentially according to operation dependency

Scenario	Expected Operation	Failure Rate	
		Conventional	RL-based
Local Fault	Trip	7.7%	0.26%
Backup	Trip	9.6%	0%
Remote Fault	Hold	3.8%	0.08%
No Fault	Hold	1.8%	0%

(e) Failure Rate During Abnormal Peaks

(f) Failure Rate During Increased Mean Load