Towards a Theory of Resilient CPS Systems

Shankar Sastry

Dean and Roy W. Carlson Professor of Engineering University of California, Berkeley

Joint work with Saurabh Amin and Galina A. Schwartz

Outline

Action Webs

Action Webs & Networked Control Systems (NCS) NCS vulnerabilities

Resilient Control for CPS

- 1. Threat assessment
- 2. Attack diagnosis
- 3. Resilient control

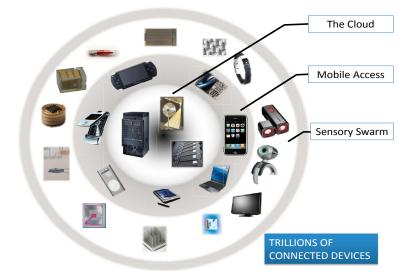
Economic Incentives

Conclusions and future research

Outline

Action Webs

Action Webs & Networked Control Systems (NCS) NCS vulnerabilities

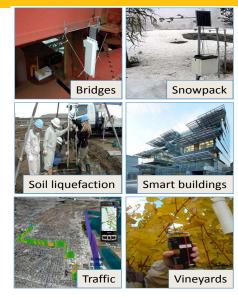

Resilient Control for CPS

- 1. Threat assessment
- 2. Attack diagnosis
- 3. Resilient control

Economic Incentives

Conclusions and future research

The swarm at the edge of the cloud


Source: J. Rabaey [ASPDAC'08]

Ubiquitous instrumentation

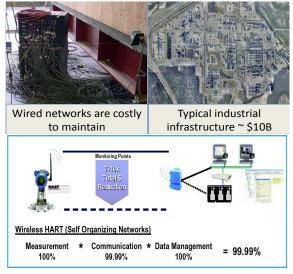
Wireless Sensor Networks (WSN) for infrastructure monitoring

- Environmental systems
- Structural health
- Construction projects
- Energy usage

Courtesy: UCB-CEE Systems Faculty

Wireless Sensor webs everywhere

- Change detection: Thresholds, phase transitions, anomalies
 - Security systems
 - Health care
 - Wildfire detection
 - Fault diagnosis
 - Tracking & surveillance


Action Webs in CPS Infrastructures

Supervisory Control & Data Acquisition (SCADA)

- Robust estimation
 - Noisy measurementsLossy communication
- Real-time control
 - Safety
 - Performance

COTS IT for SCADA

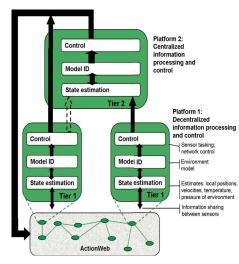
- Cost \downarrow , Reliability \uparrow
- Digital and IP based: New vulnerabilities!
- Reliability ⇒ Security

Source: Emerson case study

A complex collection of sensors, controllers, compute nodes, and actuators that work together to improve our daily lives

- From very small: Ubiquitous, Pervasive, Disappearing, Perceptive, Ambient
- To very large: Always Connectable, Reliable, Scalable, Adaptive, Flexible

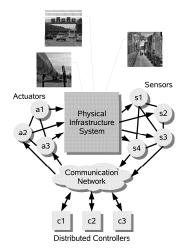
Emerging Service Models


- Building energy management
- Automotive safety and control
- Management of metropolitan traffic flows
- Distributed health monitoring
- Smart Grid

Action Webs

Observe and infer for planning and modifying action

- Dealing with uncertainty
- Tasking sensors
- Programming the ensemble
- Multiple objectives
- Embedding humans



Courtesy: Claire Tomlin

From Action Webs to Resilient CPS

Resilient/High Confidence Networked Control

- Fault-tolerant networked control
 - Limits on stability, safety, & optimality
 - Scalable model predictive control
- Security & Resilient Control
 - Availability, Integrity, & Confidentiality
 - Graceful degradation
- Economic Incentives
 - Incentive Design for investing in security
 - Interdependent Risk Assessment & Cyber Insurance

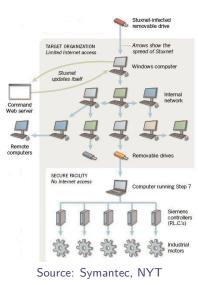
CPS Attacks

Maroochy Shire sewage plant (2000)

Tehama Colusa canal system (2007)

Los Angeles traffic control (2008)

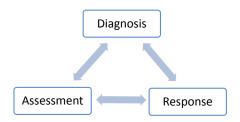
Cal-ISO power system computers (2007)


NCS/CPS security concerns

Attackers

- Malicious insiders
- Computer hackers
 - Cyber criminals
 - Cyber warriors
 - Hacktivists
 - Rogue hackers
 - Corporate spies

Stuxnet worm


- Targets SCADA systems
- Four zero-day exploits, antivirus evasion techniques, p-2-p updates, network infection routines
- Reprograms Programmable Logic Controller (PLC) code

Resilient Control for CPS

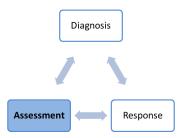
Threat assessment

- How to model attacker and his strategy?
- Consequences to the physical infrastructure
- 2 Attack diagnosis
 - How to detect manipulations of sensor-control data?
 - Stealthy [undetected] attacks
- 3 Resilient control
 - Design of resilient control algorithms
 - Tradeoffs between performance and containment

Action Webs

Action Webs & Networked Control Systems (NCS) NCS vulnerabilities

Resilient Control for CPS


- 1. Threat assessment
- 2. Attack diagnosis
- 3. Resilient control

Economic Incentives

Conclusions and future research

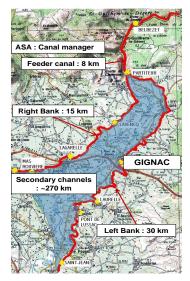
Threat assessment

- How to model attacker and his strategy?
- Consequences to the physical infrastructure

Field operational test on the Gignac canal network [Amin, Litrico, Sastry, Bayen. HSCC'10]

Models of deception and denial-of-service (DoS) attacks [Amin, Cárdenas, Sastry. HSCC'09]

Assessment for Tennessee Eastman process control system (TE-PCS) [Cárdenas, Amin, Lin, Huang, Sastry. ASIACCS'11]


Gignac water canal network

SCADA components

- Level & velocity sensors
- PLCs & gate actuators
- Wireless communication
- Multiple stakeholders

Communication station

Map of Gignac canal

Presented by permission from Cemagref, France

Gignac canal network

Physical infrastructure

Cyber infrastructure

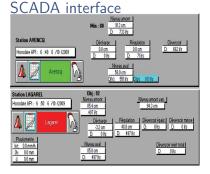
Reported attacks on water SCADA systems

Gignac canal system attacks

- Stealing water by compromising sensors
- Tampering PLCs
- Theft of solar panels

Other SCADA vulnerabilities

- Time between telemetry requests can be used for malicious traffic injection
- Encryption provides confidentiality but does not provide data integrity

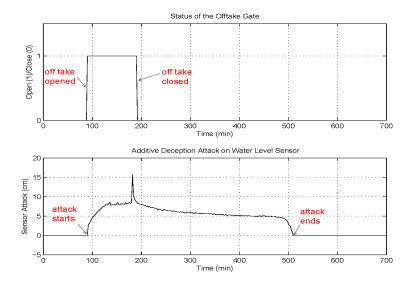

Depuis le 21 juin, le canal de Gignac est victime d'actes malveillants sur l'ouvrage de l'aqueduc de l'Aurelle (derrière le lagunage de Popian) : effondrement du radier du canal puis dégradtion des réparations misses en place (retrait des boulots de serrage, mettant gravement en péril la pérennité de l'aqueduc). L'ouvrage de l'Aurelle permet la continuité du transport de l'eau vers les parcelles du périmètre irrigué situé sur les communes de Pouzols, Le Pouget, Tressan et Puilacher, soit prés de 900 ha, pour lesquels l'apport d'eau estival est essentiel. Ces agissements ont fait l'objet de constats par les brigades de gendarmerie et de plaintes contre X. Il est à noter que l'intégralité du patrimoine de l'Association syndicale autorisée du canal de Gigane est un ouvrage public, d'ont la destruction, la dégradation ou la détérioration peuvent faire l'objet de poursuites et être punies de trois ans d'emprisonnement et de AS 000 € d'amende.

Courtesy: C. Hugodot, Manager

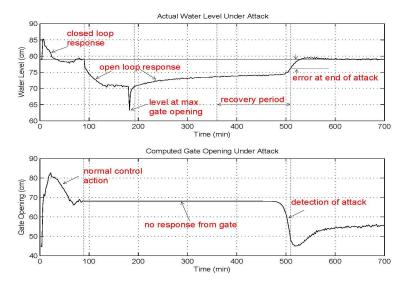
Regulatory control of canal pools

Control objective

- Manipulate gate opening
- Control upstream water level
- Reject disturbances (offtake withdrawals)



Avencq cross-regulator



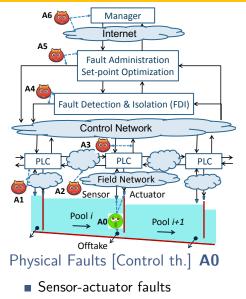
Cyber-attack on the Avencq canal pool

Field operational test (October 12th, 2009)

Successful attack

Taxonomy of Attacks on NCS

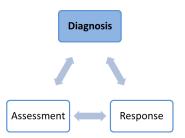
Cyber Attacks SCADA Manager [IT Security] **A6**


Unauthorized access, Viruses

Supervisory Control A3-A5

- Deception: set-point change, parameter substitution
- Denial-of-Service (DoS): network flooding, process disruption

Regulatory Layer A1-A2


- Deception: compromise of measurements & controls, spoofing, replay
- DoS: jamming, ↑ comm. latency

Unauthorized leaks

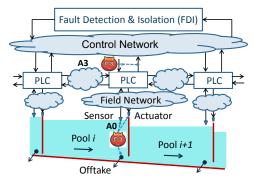
Attack diagnosis

- How to detect manipulations of sensor-control data?
- Stealthy [undetected] attacks

Observer-based diagnosis for Gignac SCADA system [Amin, Litrico, Sastry, Bayen. IEEE TCST'11]

Non-parametric CUSUM statistic based diagnosis for TE-PCS [Cárdenas, Amin, Sastry, et.al. ASIACCS'11]

Study of stealthy attacks on power system state estimators [Teixeira, Amin, Sandberg, Johansson, Sastry. IEEE CDC'10]

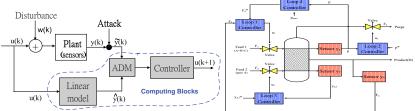

Attacks on supervisory control layer

Supervisory Layer Attacks A3

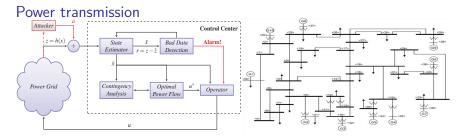
- Deception: set-point change, parameter substitution
- Denial-of-Service (DoS): network flooding, process disruption

Physical Faults/Attacks A0

- Sensor-actuator faults
- Unauthorized withdrawals

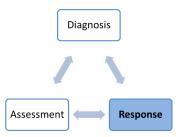

Design of a model-based diagnosis scheme

Recommendations to the European Commission on Canal Automation & the Cemagref Research Institute


- Enhanced model (redundancy) improves detection
- Sensors located closer to the offtakes are critical
- Localized sensor attacks do not lead to global degradation
- Multiple pool sensor attacks can evade detection [stealth]

Attack diagnosis for [other] SCADA systems

Process control


[Cárdenas, Amin, Lin, Huang, Sastry. ASIACCS'11]

[Teixeira, Amin, Sandberg, Johansson, Sastry. IEEE CDC'10]

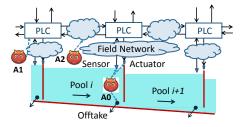
Resilient control

- Design of resilient control algorithms?
- Fundamental limitations & interdependent security

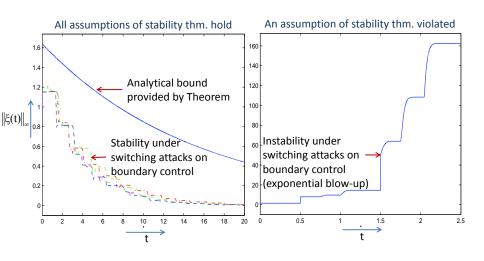
Stability of hyperbolic PDEs under switching boundary control [Amin, Hante, Bayen. IEEE TAC'10]

Incentives to secure under network induced interdependent risks [Amin, Schwartz, Sastry. GameSec'10]

Safety-preserving control for stochastic systems under comm. losses [Amin, Cárdenas, Sastry. HSCC'09]


Attacks on regulatory control layer

Regulatory layer A1-A2


- Deception: compromise of measurements & controls
- DoS: jamming, ↑ latency

Physical faults or attacks $\ensuremath{\text{A0}}$

- Sensor-actuator faults
- Unauthorized withdrawals

Switching attacks can lead to instability!

Action Webs

Action Webs & Networked Control Systems (NCS) NCS vulnerabilities

Resilient Control for CPS

- 1. Threat assessment
- 2. Attack diagnosis
- 3. Resilient control

Economic Incentives

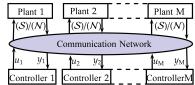
Conclusions and future research

Interdependent security (IDS) & incentives to secure

Security interdependencies due to

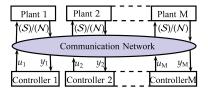
- Network induced risks
 - \Rightarrow Example: Distributed DOS attacks
- Wide use of COTS IT components
 - \Rightarrow Expect increased interdependencies

Interdependent security


- Goal: Security analysis & implementation of control measures
- Methods: Game theory & Control theory
- Observation: Individual & social incentives differ

End Office

Electric Pow


Infrastructure interdependencies

Network induced interdependencies

Game Theoretic formulation of Interdependent NCS

Two-stage game of plant-controller systems (players)

Each player

1 Invests in security $[V^i = S \& \text{ incurs } \ell^i > 0]$ or not $[V^i = N]$

2 Chooses inputs u_t^i for NCS:

$$x_{t+1}^{i} = Ax_{t}^{i} + v_{t}^{i}Bu_{t}^{i} + w_{t}^{i}$$
$$y_{t}^{i} = \gamma_{t}^{i}Cx_{t}^{i} + v_{t}^{i}$$

where $\gamma_t^i \& v_t^j$ are Bernoulli packet loss processes

Interdependent failure probabilities

Failure probabilities:

$$\mathsf{P}[\gamma_t^i = 0 \mid V] = \widetilde{\gamma}^i(V), \quad \mathsf{P}[\gamma_t^i = 1 \mid V] = 1 - \widetilde{\gamma}^i(V),$$

V := {V¹,...,V^m} Set of player security choices
Security choices and failure probabilities:

$$\tilde{\gamma}^{i}(V) = \underbrace{\mathbf{1}_{S}^{i} \bar{\gamma}^{i}}_{\text{reliability}} + \underbrace{(1 - \mathbf{1}_{S}^{i} \bar{\gamma}^{i}) \beta(\eta^{i})}_{\text{security}},$$

$$\begin{array}{l} \mathbf{1}_{S}^{i}: \text{ Indicator function 1 if } V^{i} = S \\ \mathbf{\eta}^{i}: \ \# \text{ of insecure players} \\ \mathbf{\beta}(\eta^{i}): \text{ Interdependence term} \\ 0 < \beta(\{S, \ldots, S, \underbrace{N \ldots, N}_{\eta \text{ players}}\}) < \beta(\{S, \ldots, S, \underbrace{N \ldots, N}_{\eta+1 \text{ players}}\}) < 1, \end{array}$$

Multiplayer games with interdependent security

- $V := \{V^1, \dots, V^m\}$ Set of player security choices
- $U := \{u_t^1, \dots, u_t^m | t \in \mathbb{N}_0\}$ Set of player control input sequences
- Each player minimizes his total cost:

$$J^{i}(V,U) = J^{i}_{\mathrm{I}}(V) + J^{i}_{\mathrm{II}}(V,U),$$

Security cost

$$J_{\mathrm{I}}^{i}(V) := (1 - \mathbf{1}_{S}^{i})\ell^{i}$$

2 LQG control cost:

$$J_{\mathrm{II}}^{i}(V,U) := \limsup_{T \longrightarrow \infty} \frac{1}{T} \mathsf{E} \left[\sum_{t=0}^{T-1} x_{t}^{j^{\top}} G x_{t}^{i} + v_{t}^{i} u_{t}^{j^{\top}} H u_{t}^{i} \right]$$

Social planner minimizes the aggregate cost:

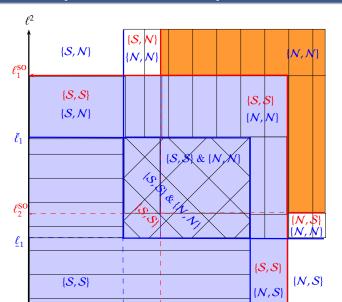
$$J^{\rm SO}(V,U) = \sum_{i=1}^m J^i(V,U)$$

$$\begin{array}{c|c} & S & N \\ S & J_{\rm I\!I}^*(\{S,S\}) + \ell^1, \ J_{\rm I\!I}^*(\{S,S\}) + \ell^2 & J_{\rm I\!I}^*(\{S,N\}) + \ell^1, \ J_{\rm I\!I}^*(\{N,S\}) \\ N & J_{\rm I\!I}^*(\{N,S\}), \ J_{\rm I\!I}^*(\{S,N\}) + \ell^2 & J_{\rm I\!I}^*(\{N,N\}), \ J_{\rm I\!I}^*(\{N,N\}) \end{array}$$

Increasing incentives

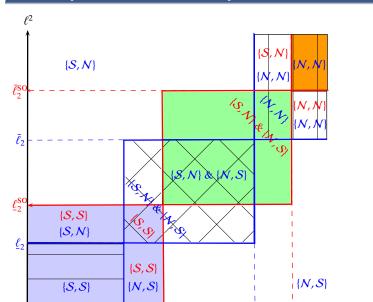
If a player secures, other player gain from securing increases:

$$J_{\mathrm{I\hspace{-1pt}I}}^*(\{N,N\}) - J_{\mathrm{I\hspace{-1pt}I}}^*(\{S,N\}) \leqslant J_{\mathrm{I\hspace{-1pt}I}}^*(\{N,S\}) - J_{\mathrm{I\hspace{-1pt}I}}^*(\{S,S\})$$


Decreasing incentives

If a player secures, other player gain from securing *decreases*:

$$J_{\mathrm{II}}^{*}(\{N,N\}) - J_{\mathrm{II}}^{*}(\{S,N\}) > J_{\mathrm{II}}^{*}(\{N,S\}) - J_{\mathrm{II}}^{*}(\{S,S\})$$


Individual optima [Nash equilibria] and social optima

Theorem [Increasing incentive case]

Individual optima [Nash equilibria] and social optima

Theorem [Decreasing incentive case]

Action Webs

Action Webs & Networked Control Systems (NCS) NCS vulnerabilities

Resilient Control for CPS

- 1. Threat assessment
- 2. Attack diagnosis
- 3. Resilient control

Economic Incentives

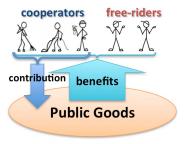
Conclusions and future research

Economic Incentives for Resilient CPS systems

NCS security & reliability

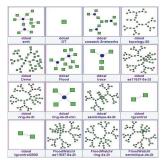
- Security failures (attacks S) and reliability failures (faults R) are difficult or costly to distinguish
- Goal: Model interdependent system failures F

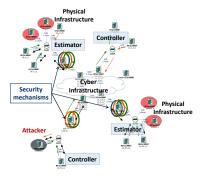
 $\mathsf{Pr}(\mathsf{S} \cap \mathsf{R} \mid \mathsf{F}) \neq \mathsf{Pr}(\mathsf{S} \mid \mathsf{F})\mathsf{Pr}(\mathsf{R} \mid \mathsf{F})$


Negative externalities

- Public goods game
- Information asymmetries
- Property right deficiencies & high enforcement costs
- Goal: Develop mechanisms to reduce NCS incentive suboptimality

Courtesy: C. Goldschmidt (Symantec)


The Public Goods Game


CPS RC + EI experimentation

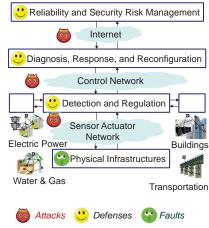
Experiments for networked infrastructure

- Testing
- Validation

Network topologies

Cyber-Security Testbed with INL

cyber-DEfense Technology Experimental Research (DETER) Testbed


Towards a theory of Resilient CPS

Resilient Control

- Assessment, detection & response
- Networked and fault-tolerant control
- Scalable resilient Control algorithms
- Fundamental Limitations

Economic Incentives

- Incentive Theory for Resilient Systems
- Mechanism Design for reconciling Nash and societal optima
- Interdependent risk assessment
- Cyber Insurance

Thank you for your attention

Shankar Sastry sastry@coe.berkeley.edu