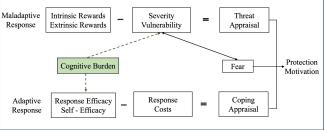


SaTC: CORE: Small: Tracking User Behavior, Cognitive Burdens, and the Impact of Behavioral Nudging on Security **Updates by Young and Older Adults**

Mohd Anwar (Lead PI, NC A&T); Amy Overman (PI, Elon U.); Joseph Stephens (PI, NC A&T)

Demographics	Personal	Platform	Logistics
Age/Gender	Perceived Difficulty	Browsers	Memory/ storage
Level of Education	Input from Others	Smartphones	Time
Technological Literacy	Past Experience	Windows	UI
Type of Engagement (Work/Leisure)	Emotions (Worry, Insult, Annoyance)		



Self-efficacy
Hypothesized Interaction between cognitive burden and self-efficacy in update compliance

Testing Protection Motivation Theory

Key Problems Addressed and their Significance

- We address the lack of security update compliance through understanding how older and younger adults make security decisions
- · We identify key factors that affect security-related software update behaviors as it relates to these two populations and measure the moderator effect of cognitive burden on security update behavior.

Technical Approach

- · We conduct simulation studies, surveys and behavioral experiments that test the *Protection* Motivation Theory across age groups, cognitive load conditions, and linguistic framing conditions
- We manipulate extraneous cognitive load and test how the cognitive load is handled by young and older adults
- We explore the behavioral nudge to target or manipulate some of these key factors

Scientific Impact

- The project contributes to both cognitive science and computer science by linking security-related user behaviors to broader theories of decision making and cognitive aging.
- · We assess the effectiveness of cybersecurity countermeasures that rely on software updates.

Contributions

- Our research contributes to the understanding of how security-related decisions are made in realworld settings
- We investigate the cognitive burden plays as a moderator variable in compliance behaviors
- We contribute to the investigation of whether small changes in messaging strategies are likely to nudge users toward better compliance

Broader Impact

- This research informs cybersecurity experts in PC environments.
- This project increases the knowledge base concerning software interface design for PC users including older adults and non-expert users.

Broader Impact (Education/Outreach)

The project involves diverse student populations and participants, particularly including Latinx, African-Americans, and women and builds capacity and collaboration in the area of cybersecurity research at collaborating institutions.

Broader Impact and Broader Participation

The results of the project aid in promoting positive cybersecurity behaviors, especially among the growing population of older adults.