Transys: Leveraging Common Security Properties Across Hardware Designs

Rui Zhang (Presenter), Cynthia Sturton (PI) University of North Carolina at Chapel Hill https://www.cs.unc.edu/~csturton/HWSecurityatUNC/

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Background

- Validating the security of hardware designs is important.
- Assertion based verification (ABV) can be used for hardware security validation.

Insight

 Security properties developed for one hardware design can be leveraged and

Motivation

Developing a comprehensive set of security properties is challenging.

• Goal: Reduce the manual effort for

developing security properties.

Approach

- Variable Mapping: Use features from AST,
 PDG to find appropriate counterpart.
- Structural Transformation: Learn the arithmetic expression between variables from PDG.
- **Constraint Refinement**: Add terms to the antecedent to make the property valid.

Main Results

Designs	Total Transl.	Total Succ.	Rate
AES	360	336	93%
AES w/ Trojans	400	400	100%
RSA	18	18	100%
CPU	46	39	85%
Total	824	793	96%

Transys [IEEE S&P 2020]

Progress

• A systematic approach for security

- property translation.
- A tool chain implementing our methodology.
- An evaluation of Transys for 36 properties
 on 38 AES, 3 RSA, and 5 RISC designs.

Intellectual Merit

- Exploration of the feasibility of property translation across hardware designs.
- Moving toward automating the identification and generation of hardware security properties.

AES	28.8s
RSA	0.46s
CPU	189s
Average	70s

Broader Impact

Improving the state of the art in

developing hardware security properties.

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia