
TrustZone as a Secure Tensor Processor
Heejin Park, Noah Curran, Felix Xiaozhu Lin

Purdue University

Trustworthy On-Device Inference Design Choice for Protection Boundary

Secure Tensor Processor Architecture

Early Results and Future Works

• Low-end devices are more vulnerable
• Large ML inference software stack

• Lack of professional management

• Threat model - a powerful adversary
• Take full control of device

• Sniff user private data on ML processing

• Fabricate the inference processing and result

• Approach – ML computation within TEE

• Deploy TZ as secure tensor processor

• Safeguard minimal instruction set for ML

inference

• Estimated overhead running RestNet-18
• Numerous memory load instructions

• GEMM operation is dominant in total execution time

• Moderate security overhead (17%)
• World switch (7.8%) comes from Load/Store

• Crypto overhead (7.5%) for en-/decryption

• Future works
• How to guarantee data freshness during processing?

• Adding tensor unique identifier to the hash chain

• How to validate correctness of inference?

• Symbolic execution of instruction set

• How to further improve performance?

• Internal parallelism within primitive ML instructions

(cat: 95%) à (dog: 87%)

User Application

ML Instruction Generation/Execution

• Design constraints:

User App

High-level ML framework
(TF, mxnet, PyTorch, …)

User App

Instruction Generator

Graph/Tensor Optimizer

Primitive ML instructions

Prior works:
Entire ML framework

Our design:
Only primitive ML instructions

M
L

fra
m

ew
or

k

3rd Party Libraries

Load,
Store,
ALU,
GEMM

• Protections at the lowest point
• Minimal software stack in TEE

• Others out of TEE à reduce TCB size

• Primitive ML instructions
• The lowest-level computations for inference

• Along with VTA* design principle

h t t p : / / x s e l . r o c k s

of Primitive ML instructions

0

500

1000

1500

2000

Base STP

Ex
ec

ut
in

o
ti

m
e

(m
s)

Load Store GEMM ALU

WS Copy Crypto Hash

Estimated execution time per instructions

0 1000 2000 3000

Load

Store

GEMM

ALU

1) Limited memory 2) Minimal TCB

TrustZone TEE

Secure Tensor Processor

Load(input)

Load(weight)

GEMM(input, weight)

Store(result)

Load Store

GEMM ALU

Primitive ML instructions

network,

weight

…
…

1

Untrusted Environment

Load

Load

GEMM

…Load

Ch
ai

ne
d

op
s

3

2 4

6

• Challenges:
• Hard limited secure memory (< 2MB) à tiled tensor streaming

• Data integrity beyond protection boundary à en-/decryption, HMAC

• Entire inference execution correctness à hash chain verified by trusty cloud

7
Load

Load

GEMM

…Load

High-Level IR

Graph/Tensor Optimizer

Fabricate results

Sniff data

Take control of device

Protected Unprotected

Data

Model

Occlumency
[MobiCom 19]

User App

Data

Model

TensorSScone
[arXiv 19]

Our design choice – ML computations at the lowest point

*A hardware–software blueprint for flexible deep learning specialization

[IEEE Micro2019]

• Secure tensor processor
• Virtual processor with secure ISA for inference, exploiting ARM TrustZone

• Processing ML inference by 1) fetch instructions out of TEE, 2) execute them within TEE

• Generating hash chain of instructions for verifying inference correctness

1 TVM generates instruction set with model

2 Pre-encrypted image is ingested and tiled

3 Fetch instructions and decrypt tiled image

4

Encrypt and store the partial result out of TEE5

Add primitive ML instruction to hash chain6

When completed, cloud verifies hash chain

5

7

Execute corresponding ML instructions

