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« Challenges:

« Hard limited secure memory (< 2MB) - tiled tensor streaming
Secure Tensor PfOCQSSOT Architecture . Datg |n.tegr|ty beyond p.rotectlon boundary - en-/decryptlon., .HI\/IAC
* Entire inference execution correctness - hash chain verified by trusty cloud
« Secure tensor processor
* Virtual processor with secure ISA for inference, exploiting ARM TrustZone
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« Generating hash chain of instructions for verifying inference correctness
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* Future works
 How to guarantee data freshness during processing?
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