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Trustworthy On-Device Inference Design Choice for  Protection Boundary

Secure Tensor Processor Architecture

Early Results and Future Works

• Low-end devices are more vulnerable
• Large ML inference software stack

• Lack of professional management

• Threat model - a powerful adversary
• Take full control of device

• Sniff user private data on ML processing

• Fabricate the inference processing and result

• Approach – ML computation within TEE

• Deploy TZ as secure tensor processor

• Safeguard minimal instruction set for ML 

inference

• Estimated overhead running RestNet-18
• Numerous memory load instructions

• GEMM operation is dominant in total execution time

• Moderate security overhead (17%)
• World switch (7.8%) comes from Load/Store

• Crypto overhead (7.5%) for en-/decryption

• Future works
• How to guarantee data freshness during processing?

• Adding tensor unique identifier to the hash chain

• How to validate correctness of inference?

• Symbolic execution of instruction set

• How to further improve performance?

• Internal parallelism within primitive ML instructions

(cat: 95%) à (dog: 87%)

User Application

ML Instruction Generation/Execution

• Design constraints: 

User App

High-level ML framework
(TF, mxnet, PyTorch, …)

User App

Instruction Generator

Graph/Tensor Optimizer

Primitive ML instructions

Prior works:
Entire ML framework

Our design:
Only primitive ML instructions
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• Protections at the lowest point
• Minimal software stack in TEE

• Others out of TEE à reduce TCB size

• Primitive ML instructions
• The lowest-level computations for inference

• Along with VTA* design principle
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1) Limited memory 2) Minimal TCB
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• Challenges:
• Hard limited secure memory (< 2MB) à tiled tensor streaming

• Data integrity beyond protection boundary à en-/decryption, HMAC

• Entire inference execution correctness à hash chain verified by trusty cloud
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Our design choice – ML computations at the lowest point

*A hardware–software blueprint for flexible deep learning  specialization 
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• Secure tensor processor
• Virtual processor with secure ISA for inference, exploiting ARM TrustZone

• Processing  ML inference by 1) fetch instructions out of TEE, 2) execute them within TEE

• Generating hash chain of instructions for verifying inference correctness

1 TVM generates instruction set with model

2 Pre-encrypted image is ingested and tiled

3 Fetch instructions and decrypt tiled image
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Encrypt and store the partial result out of TEE5

Add primitive ML instruction to hash chain6

When completed, cloud verifies hash chain
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Execute corresponding ML instructions


