PURDUE TrustZone as a Secure Tensor Processor

Electrical and Heejin Park, Noah Curran, Felix Xiaozhu Lin
Computer Engineering Purdue Universit
Trustworthy On-Device Inference Design Choice for Protection Boundary
: ""'# {o} D - Design constraints: 1) Limited memory 2) Minimal TCB

 Low-end devices are more vulnerable i

. Large ML inference software stack ohe contral of device /N 4 Our design choice - ML computations at the lowest point

° LaCk Of prOfeSSIOnaI management O@O e = Occlumency TensorSScone

- u [MobiCom 19] [arXiv 19]

» Threat model - a powerful adversary 4 ¥ s User App || User App User App . Prot.e.ctions at the Iowgst point

« Take full control of device User Application Model Model ~ « Minimal software stack in TEE

« Sniff user private data on ML processing . ‘Xnet O PyTorch Data Data < Graph/Tensor Optimizer « Others out of TEE = reduce TCB size

- Fabricate the inference processing and result , s

High-Level IR High-level ML framework | £ | instruction Generator _— . .
A h_ ML fati i TEE - £ s © Primitive ML instructions
pgrolacTZ_ COmpU ation within Graph/Tensor Optimizer 3rd Party Libraries = Primitive ML instructions |— jﬂe’ * The lowest-level Computations for inference
* Ueploy 1 £ as secure tenso.r Processor . - _ eemv * Along with VTA* design principle
« Safeguard minimal instruction set for ML »n ML Instruction Generation/Execution | Prior works: | Our de5|gn: - A hardware—software blueprint for flexible deep leaming specialization
inference S0 Entire ML framework Only primitive ML instructions [IEEE Micro2019]
Fabricate results " Protected Unprotected
{eat:—95%) > (dog: 87%)

« Challenges:

« Hard limited secure memory (< 2MB) - tiled tensor streaming
Secure Tensor PfOCQSSOT Architecture . Datg |n.tegr|ty beyond p.rotectlon boundary - en-/decryptlon., .HI\/IAC
* Entire inference execution correctness - hash chain verified by trusty cloud
« Secure tensor processor
* Virtual processor with secure ISA for inference, exploiting ARM TrustZone
« Processing ML inference by 1) fetch instructions out of TEE, 2) execute them within TEE Early RGSUltS and FUture WOTkS

« Generating hash chain of instructions for verifying inference correctness

« Estimated overhead running RestNet-18
Secure Tensor Processor 1 | TVM generates instruction set with model « Numerous memory load instructions

A

TrustZone TEE

]
% 1 |3 Fetch instructions and decrypt tiled image * Moderate Security overhead (170/0)
ek Primitive ML instructions — 0 1000 2000 3000 » World switch (7.8%) comes from Load/Store
@ W) 4 | Execute corresponding ML instructions # of Primitive ML instructions

« Crypto overhead (7.5%) for en-/decryption

« GEMM operation is dominant in total execution time

2 | Pre-encrypted image is ingested and tiled

Untrusted Environment

Store

network,

lll‘lll

5 | Encrypt and store the partial result out of TEE

Load(input) |‘
Load(weight) |'
GEMM(input, weight) |»

* Future works
 How to guarantee data freshness during processing?

© | Add primitive ML instruction to hash chain

Store(result) z When completed, cloud verifies hash chain .CE) ° Addlng f[ensor unique Identlfllel’ to the hash chain
— 5 « How to validate correctness of inference?
i = Base STP » Symbolic execution of instruction set
Load Wload ®Store = GEMM =ALU « How to further improve performance?

WS Copy mCrypto EHash
Estimated execution time per instructions

Load

 |Internal parallelism within primitive ML instructions

GEMM

