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Trustworthy Computing

• Trustworthy =
+ Reliability

• Does it do the right thing?
+ Security

• How vulnerable is it to attack?
+ Privacy

• Does it protect a person’s identity and data?
+ Usability

• Can a human use it easily?

• Computing = hardware + software + people
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Trustworthy AI

• Trustworthy =
+ Reliability/Safety

• Does it do the right thing?
+ Security

• How vulnerable is it to attack?
+ Privacy

• Does it protect a person’s identity and data?
+ Usability

• Can a human use it easily?

• AI = data + algorithm + context

+ Fairness
• Are the model outcomes unbiased?

+ Accountable
• Who or what is responsible for the outcome?

+ Transparent (Explainable)
• How was the outcome produced?

+ Ethical
• Was the data collected in an ethical manner?
• Will the outcome be used in an ethical manner?

+ Robustness
• How sensitive is the outcome to a change in the 

input?

FAT(E) ® FASTER



DeepXplore: Testing Deep Learning Systems

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana, “Deep Xplore: Automated Whitebox Testing of Deep Learning Systems, Proceedings 
of the 26th ACM Symposium on Operating Systems Principles, October 2017, Best Paper Award.



DeepXplore

• Efficiently and systematically tests DNNS of hundreds of thousands of neurons without 
labeled data (only needs unlabeled seeds)

• Key ideas: neuron coverage (akin to code coverage), differential testing, and domain-
specific constraints for focusing on realistic inputs

• Testing as a joint optimization problem (maximize both number of differences and neuron 
coverage)

• Found 1000s of fatal errors in 15 state-of-the-art DNNs for ImageNet, self-driving cars, and 
PDF/Android malware

Seed,
No accident

Darker,
Accident

https://github.com/peikexin9/deepxplore



DNNs are differentiable. Using gradient ascent to solve the 
optimization problem. Here eventually from the seed input we find 
input values that will cause the two DNNs to differ in their output.



DP and Machine Learning: PixelDP

Mathias Lecuyer, Baggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana, “Certified Robustness to Adversarial Examples with 
Differential Privacy, arXiv:1802.03471v2, IEEE Security and Privacy (‘’Oakland’’) 2019.



2. Provable guarantee from DP says classifier is 
robust to some degree of input perturbations.

1. Add a noise layer a la Differential Privacy



Trustworthy Computing and Formal Methods

M ⊨ P

M: program (code), protocol, model of concurrent system, distributed system, hardware
⊨: logics and tools, e.g., model checking, theorem proving (| ), SMT solvers
P:  correctness properties (safety and liveness)

E, 

E:  environment is often implicit



Trustworthy AI and Formal Methods

E, M ⊨ P

M: machine-learned model, …, program (code)
⊨: probabilistic logics and tools
P : probabilistic, stochastic
E: stochastic process or distribution that generates the inputs on which M’s outputs

need to be verified;
Concretely, think of E as datasets/data distributions used for building M, but both 
uncertainty and bias are typically inherent to such datasets/data distributions



Technical Challenges and Opportunities

• M and P are inherently—structurally and semantically—different from a progam and a correctness 
property about program behavior

• As much work goes into modeling the environment E (e.g., input distribution, probabilistic graphical 
model, or stochastic process) as constructing M itself

• “Correctness” properties P, such as fairness and robustness, have inherent ambiguity or 
stochasticity germane to the intended uses of M

• Statistical nature of M, P, and E means that AI verification is more amenable to methods over 
continuous domains (e.g., interval analysis) rather than exact solver based approaches (e.g., SAT)

E, M ⊨ P



Formal Methods Needs and Opportunities

• Need new specification languages (logics and models) for E, M, and P

• Need new verification techniques for ⊨
• Need to interpret verification failures (“counterexamples”) for fixing E, M, and/or P

• Need to fit specification and verification steps in AI/ML workflow

• Need to relate back to application and end user, i.e., what M is being used for:
Can one better trust M, if it passes a verification check?  Why?
What more needs to be done?

E, M ⊨ P



COMPAS Data
Proprietary algorithms widely used by judges to help determine risk of re-offense are 

almost twice as likely to mistakenly flag black defendants than white defendants.

Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner,
“Machine Bias,” ProPublica, May 23, 2016.



Impossibility result 

A risk score could either be equally predictive or equally wrong for all races—but not both.

Jon Kleinberg, Sendhil Mullainathan, Manish Raghavan, “Inherent Trade-Offs in the Fair Determination of 
Risk Scores,,” Proceedings of Innovations in Theoretical Computer Science (ITCS), 2017.

ProPublica (“equal odds”)
• Balance for the positive class
• Balance for the negative class

Average score assigned to whites who reoffend = 
Average score assigned to blacks who reoffend

and similarly for those who do not reoffend

Average score for whites who reoffend = 
Fraction of whites who reoffend

and similarly for blacks

Northepointe (“statistical parity”)
• Calibration



Formalizing P (for two different notions of fairness)

P: probability distribution (population)
f: real-valued function
We assume we can measure a “protected” attribute A in A, a qualification attribute Y in Y, and other 
attributes X in X that are inputs to f.



COMPAS Data
Northpointe: Statistical Parity ProPublica: Equalized Odds

A = blackA = white
Y = did not recidivate Y = did recidivate

A = blackA = white A = blackA = white



Trustworthy AI meets Formal Methods

E, M ⊨ P



Thank You


